Skip to main content
Log in

Optimized time–frequency features and semi-supervised SVM to heartbeat classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

One of the most significant indicator of heart disease is arrhythmia showing heartbeat patterns. Thus, early and accurate detection of arrythmia types by categorization of heartbeats is important. In this paper, we introduce an ECG beat classifier system integrating two main parts: feature extraction and classification. For the first part, we consider the features observed in the time–frequency (tf) plane where the ECG is projected using a variant of Stockwell transform. For the second part, the framework of semi-supervised SVM with asymmetric costs (AS3VM) has been applied for assessment of the obtained feature sets performance. Notice that four heartbeat types have been considered: normal beats (N), left and right bundle branch blocks (L and R) and premature ventricular contractions (V). The proposed method has been evaluated on PhysionNet’s MIT-BIT arrythmia database. The obtained results show that the suggested approach achieves significant separability of the classes and thus, able to make prediction accuracies of \(99.35\%\), \(98.73\%\), \(98.57\%\) and \(99.44\%\) for, respectively, N, L, R and V beats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De-Chazal, P., Reilly, R.: Automatic classification of ECG beats using waveform and heartbeat interval features. In: IEEE Xplore, ICASSP 2003, pp. 269–272 (2003)

  2. Christov, I., Gomez-Herrero, G., Krasteva, V., Jecova, I., Gotchev, A.: Comparative study of morphological and time–frequency ECG descriptors for heartbeat classification. Med. Eng. Phys. 28, 876–887 (2006)

    Article  Google Scholar 

  3. Krasteva, V., Jecova, I.: QRS template matching for recognition of ventricular ectopic beats. Ann. Biomed. Eng. 55(12), 2065–2076 (2007)

    Article  Google Scholar 

  4. Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)

    Article  Google Scholar 

  5. Chen, S., Hua, W., Li, Z., Li, J., Gao, X.: Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control 31, 165–173 (2017)

    Article  Google Scholar 

  6. Khazaee, A., Ebrahimzadeh, A.: Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Control 5, 252–263 (2010)

    Article  Google Scholar 

  7. Talbi, M.L., Charef, A.: PVC discrimination using the QRS power spectrum and self-organizing maps. Comput. Methods Programs Biomed. 94, 223–231 (2009)

    Article  Google Scholar 

  8. Zidelmal, Z., Amirou, A., Ould-Abdeslam, D., Merckle, J.: ECG beat classification using a cost sensitive classifier. Comput. Methods Programs Biomed. 111(3), 570–577 (2013)

    Article  Google Scholar 

  9. Manab, K., Samit, A.: ECG beat classification using mixture of features. International Scholarly Research Notices (2014)

  10. Raj, S., Ray, K.C., Shankar, O.: Cardiac arrhythmia beat classification using DOST and PSO tuned SVM. Comput. Methods Programs Biomed. 136, 163–177 (2016)

    Article  Google Scholar 

  11. Oh, S.L., Ng, E.Y., Tan, R.S., Acharya, U.R.: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Comput. Biol. Med. (2018). https://doi.org/10.1016/j.compbiomed.2018.12.012

    Article  Google Scholar 

  12. Ramirez, E., Melin, P., Prado-Arechiga, G.: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification. Expert Syst. Appl. (2019). https://doi.org/10.1016/j.eswa.2019.02.035

    Article  Google Scholar 

  13. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localisation of the complex spectrum: the S-Transform. IEEE Trans. Signal. Process 44(4), 998–1001 (1996)

    Article  Google Scholar 

  14. Zidelmal, Z., Hamil, H., Moukadem, A., Amirou, A., Ould-Abdeslam, D.: S-transform based on Compact Support Kernel. Digit. Signal Proc. 62, 137–149 (2017)

    Article  Google Scholar 

  15. Mark, R., Moody, G.: MIT-BIH arrhythmia database. http://www.physionet.org/physiobank/database/mitdb/. Accessed 16 Sept 2018

  16. Mark, R., Wallen, R.: AAMI-recommended practice: testing and reporting performance results of ventricular arrhythmia detection algorithms. Technical Report, ECAR, AAMI (1987)

  17. Köhler, B.U., Hennig, C., Orglmeister, R.: The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(3), 42–57 (2002)

    Article  Google Scholar 

  18. Zidelmal, Z., Amirou, A., Adnane, M., Belouchrani, A.: QRS detection using wavelet coefficients. Comput. Methods Programs Biomed. 107(3), 490–496 (2012)

    Article  Google Scholar 

  19. Zidelmal, Z., Amirou, A., Ould-Abdeslam, D., Moukadem, A., Dieterlin, A.: QRS detection using S-Transform and Shannon Energy. Comput. Methods Programs Biomed. 116(1), 1–9 (2014)

    Article  Google Scholar 

  20. Zidelmal, Z., Amirou, A., Belouchrani, A.: Heartbeat classification using Support Vector Machines (SVMs) with an embedded reject option. Int. J. Pattern Recogn. Artif. Intell. 26(01), 1250001 (2012)

    Article  MathSciNet  Google Scholar 

  21. Lfhede, J., Thordstein, M., Lfgren, N., Flisberg, A., Rosa-Zurera, M., Kjellmer, I., Lindecrantz, K.: Automatic classification of background EEG activity in healthy and sick neonates. J. Neural Eng. 7(1), 016007 (2010)

    Article  Google Scholar 

  22. Boashash, B., Azemi, G., Khan, N.A.: Principles of time–frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality detection. Pattern Recognit. 48, 616–627 (2015)

    Article  Google Scholar 

  23. Boashash, B.: Time–Frequency Signal Analysis and Processing: A Comprehensive Reference. Elsevier, Amsterdam (2015)

    Google Scholar 

  24. Sejdic, E., Djurovic, I., Jiang, J.: Time–frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Proc. 19(1), 153–183 (2009)

    Article  Google Scholar 

  25. Vapnik,V.N: The nature of Statistical Learning Theory. 2nd Ed. New York (2000)

  26. Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings of ICML-99, pp. 200–209. Morgan Kaufmann Publishers, San Francisco (1999)

Download references

Acknowledgements

This work was partly supported by the Algerian Ministry of Higher Education and research under the CNEPRU Project: A10N01UN150120150001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djaffar Ould-Abdesslam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekhal, R., Zidelmal, Z. & Ould-Abdesslam, D. Optimized time–frequency features and semi-supervised SVM to heartbeat classification. SIViP 14, 1471–1478 (2020). https://doi.org/10.1007/s11760-020-01681-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01681-9

Keywords

Navigation