Skip to main content
Log in

A multiresolution approach for enhancement and denoising of microscopy images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In order to overcome blurring due to microscope optics in fluorescence microscopy, we propose a wavelet transform-based non-iterative blind deconvolution method. In our proposed deconvolution algorithm, we used wavelet-based denoising algorithms. We compared discrete wavelet transform (DWT) and wavelet packet transform (WPT) structures as denoising algorithms. WPT-based algorithm resulted in less error than the DWT-based algorithm. Minimum error was obtained for coif5 wavelet type. We compared our denoising methods with several standard denoising methods. Also, we compared our proposed deconvolution algorithm with several standard deconvolution methods. Our proposed wavelet transform-based deconvolution method resulted in the least error compared to other methods. To test the efficacy of our deconvolution method on cell images, we proposed a wavelet entropy-based non-reference image quality (contrast enhancement) metric. We tested our proposed metric by increasing blurring ratio both for noiseless and noisy images. Our metric is useful for evaluating image quality in terms of deblurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu, Q., Merchant, F.A., Castleman, K.R.: Microscope Image Processing. Academic Press, Amsterdam (2008)

    Google Scholar 

  2. Delpretti, S., Luisier, F., Ramani, S., Blu, T., Unser, M.: Multiframe sure-let denoising of timelapse fluorescence microscopy images. In: Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, 14–17 May 2008, pp. 149–152

  3. Sarder, P., Nehorai, A.: Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23(3), 32–45 (2006)

    Article  Google Scholar 

  4. Shah, S.: Deconvolution Algorithms for Fluorescence and Electron Microscopy. University of Michigan, Ann Arbor (2006)

  5. Fish, D.A., Brinicombe, A.M., Pike, E.R., Walker, J.G.: Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12(1), 58–65 (1995). doi:10.1364/josaa.12.000058

    Article  Google Scholar 

  6. Lanteri, H., Aime, C., Beaumont, H., Gaucherel, P.: Blind deconvolution using the Richardson-Lucy algorithm, vol. 2312. Optics in Atmospheric Propagation and Random Phenomena. SPIE—Int Soc Optical Engineering, Bellingham (1994)

  7. Fan, F., Yang, K., Xia, M., Li, W., Fu, B., Zhang, W.: Comparative study on several blind deconvolution algorithms applied to underwater image restoration. Opt. Rev. 17(3), 123–129 (2010). doi:10.1007/s10043-010-0022-7

    Article  Google Scholar 

  8. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 20–25 June 2011, pp. 2657–2664

  9. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

    Article  Google Scholar 

  10. Caron, J.N., Namazi, N.M., Rollins, C.J.: Noniterative blind data restoration by use of an extracted filter function. Appl. Opt. 41(32), 6884–6889 (2002)

    Article  Google Scholar 

  11. Caron, J.N.: Application of SeDDaRA Blind Deconvolution for Efficient Improvement of Confocal Microscopy Images. Quarktet Technical Note (2011)

  12. Boutet de Monvel, J., Le Calvez, S., Ulfendahl, M.: Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys. J. 80(5), 2455–2470 (2001). doi:10.1016/S0006-3495(01)76214-5

    Article  Google Scholar 

  13. Nowak, R.D., Baraniuk, R.G.: Wavelet-domain filtering for photon imaging systems. IEEE Trans. Image Process. 8(5), 666–678 (1999). doi:10.1109/83.760334

    Article  Google Scholar 

  14. Starck, J.-L., Bijaoui, A.: Filtering and deconvolution by the wavelet transform. Signal Process. 35(3), 195–211 (1994)

    Article  MATH  Google Scholar 

  15. Bernas, T., Asem, E.K., Robinson, J.P., Rajwa, B.: Compression of fluorescence microscopy images based on the signal-to-noise estimation. Microsc. Res. Tech. 69(1), 1–9 (2006). doi:10.1002/jemt.20259

    Article  Google Scholar 

  16. Grgic, S., Grgic, M., Zovko-Cihlar, B.: Performance analysis of image compression using wavelets. IEEE Trans. Ind. Electron. 48(3), 682–695 (2001)

    Article  Google Scholar 

  17. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  18. Willett, R.M., Nowak, R.D.: Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans. Med. Imaging 22(3), 332–350 (2003)

    Article  Google Scholar 

  19. Colicchio, B., Maalouf, E., Haeberle, O., Dieterlen, A.: Wavelet filtering applied to 3D wide field fluorescence microscopy deconvolution. In: PSIP’07, Mulhouse, France 2007

  20. Chaux, C., Blanc-Féraud, L., Zerubia, J.: Wavelet-based restoration methods: application to 3D confocal microscopy images. In: Van De Ville, D., Goyal, V. K., Papadakis, M. (eds.) SPIE 2007 Wavelets XII, vol. 6701, p. 67010E. SPIE, San Diego, CA, USA (2007). doi:10.1117/12.731438

  21. Larson, J.M.: 2D and 3D deconvolution of confocal fluorescence images by maximum likelihood estimation. 86–94 (2002). doi:10.1117/12.467835

  22. Biggs, D.S.C.: Clearing up deconvolution. In. Biophotonics International, vol. 11. vol. 2, p. 32(36) (2004)

  23. Laksameethanasan, D., Brandt, S.S., Renaud, O., Shorte, S.L.: Dual filtered backprojection for micro-rotation confocal microscopy. Inverse Probl. 25(1), 1–17 (2009). doi:10.1088/0266-5611/25/1/015006

    Google Scholar 

  24. Wallace, W., Schaefer, L.H., Swedlow, J.R.: A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31(5), 1076 (2001)

    Google Scholar 

  25. Donoho, D.L., Johnstone, I.M.: Threshold selection for wavelet shrinkage of noisy data. In: Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, 3–6 Nov 1994 1994, vol. 21, pp. A24–A25

  26. Luisier, F., Vonesch, C., Blu, T., Unser, M.: Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process. 90(2), 415–427 (2010). doi:10.1016/j.sigpro.2009.07.009

    Article  MATH  Google Scholar 

  27. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, New York (1989)

    MATH  Google Scholar 

  28. Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice-Hall, New York (1990)

  29. Luo, G.: Fast wavelet image denoising based on local variance and edge analysis. Int. J. Intell. Technol. 1(2), 165–175 (2006)

    Google Scholar 

  30. Silva, R., Minetto, R., Schwartz, W., Pedrini, H.: Adaptive edge-preserving image denoising using wavelet transforms. Pattern Anal. Appl. 1–14 (2012). doi:10.1007/s10044-012-0266-x

  31. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson/Prentice Hall, New York (2008)

    Google Scholar 

  32. Mallat, S.G., Peyré, G.: A Wavelet Tour of Signal Processing: The Sparse Way, 2nd edn. Academic Press, Burlington, MA, USA (2009)

    Google Scholar 

  33. Haseyama, M., Takezawa, M., Kondo, K., Kitajima, H.: Ieee: An image restoration method using IFS. In: 2000 International Conference on Image Processing, Vol Iii, Proceedings (2000)

  34. Koç, S., Ergelebi, E.: Image restoration by lifting-based wavelet domain E-median filter, vol. 28. Taejon, COREE, REPUBLIQUE DE, Electronics and Telecommunications Research Institute (2006)

  35. Fryzlewicz, P., Nason, G.P.: A Haar-Fisz algorithm for Poisson intensity estimation. J. Comput. Graph. Stat. 13(3), 621–638 (2004). doi:10.1198/106186004X2697

    Article  MathSciNet  Google Scholar 

  36. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41, 613–627 (1995)

    Google Scholar 

  37. Donoho, D.L.: Wavelet shrinkage and W.V.D.: a 10-minute tour. Paper presented at the Progress in Wavelet Analysis and Applications

  38. Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. Paper presented at the in Wavelets and Statistics, Lecture Notes in Statistics 103

  39. Gabarda, S., Cristobal, G.: Blind image quality assessment through anisotropy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24(12), B42–51 (2007)

    Article  Google Scholar 

  40. De, I., Sil, J.: Wavelet entropy based no-reference quality prediction of distorted/decompressed images. In: Computer Engineering and Technology (ICCET), 2010 2nd International Conference on, 16–18 April 2010 2010, pp. V3–245–V243-250

  41. Yordanova, J., Kolev, V., Rosso, O.A., Schurmann, M., Sakowitz, O.W., Ozgoren, M., Basar, E.: Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance. J. Neurosci. Meth. 117(1), 99–109 (2002). doi:10.1016/S0165-0270(02)00095-X

    Article  Google Scholar 

  42. Barthel, K.U.: Volume Viewer. http://rsb.info.nih.gov/ij/plugins/volume-viewer.html (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Bal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal, U., Engin, M. & Utzinger, U. A multiresolution approach for enhancement and denoising of microscopy images. SIViP 9, 787–799 (2015). https://doi.org/10.1007/s11760-013-0510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0510-x

Keywords

Navigation