Skip to main content
Log in

Bronchoscopic navigation and tissue diagnosis

  • Special Edition
  • Diagnosis and Treatment for Early Stage Non-small Cell Lung Cancer
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Diagnosis of early-stage lung cancer has become increasingly important as the detection of peripheral pulmonary lesions (PPLs) grows with widespread adoption of CT-based lung cancer screening. Although CT-guided transthoracic needle aspiration has been the standard diagnostic approach for PPLs, transbronchial sampling by bronchoscopy is often performed due to its reduced rate of adverse events. However, the diagnostic yield of conventional bronchoscopy is often poor. Various bronchoscopic technologies have emerged over recent years to address this limitation, including thin/ultrathin bronchoscopes, radial probe endobronchial ultrasound (RP-EBUS), virtual navigation bronchoscopy (VBN), electromagnetic navigation bronchoscopy (ENB), and robotic bronchoscopy. Bronchoscopic transparenchymal nodule access (BTPNA) and transbronchial access tool (TBAT) are novel techniques that leverage navigational bronchoscopic technologies to further improve access to lesions throughout the lung. The devices used for sampling tissue have similarly evolved, such as the introduction of cryobiopsy. These innovative bronchoscopic techniques allows higher diagnostic yield even in small PPLs. Given the complexity of these new techniques and technologies, it is important for physicians to understand their strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  Google Scholar 

  2. Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e93S–e120S.

    Article  Google Scholar 

  3. Ost DE, Ernst A, Lei X, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQUIRE registry. Am J Respir Crit Care Med. 2016;193:68–77.

    Article  Google Scholar 

  4. Asano F, Shinagawa N, Ishida T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial. Am J Respir Crit Care Med. 2013;188:327–33.

    Article  Google Scholar 

  5. Shinagawa N, Yamazaki K, Onodera Y, et al. CT-guided transbronchial biopsy using an ultrathin bronchoscope with virtual bronchoscopic navigation. Chest. 2004;125:1138–43.

    Article  Google Scholar 

  6. Oki M, Saka H, Kitagawa C, et al. Endobronchial ultrasound-guided transbronchial biopsy using novel thin bronchoscope for diagnosis of peripheral pulmonary lesions. J Thorac Oncol. 2009;4:1274–7.

    Article  Google Scholar 

  7. Oki M, Saka H, Ando M, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am J Respir Crit Care Med. 2015;192:468–76.

    Article  Google Scholar 

  8. Oki M, Saka H, Asano F, et al. Use of an ultrathin vs thin bronchoscope for peripheral pulmonary lesions: a randomized trial. Chest. 2019. https://doi.org/10.1016/j.chest.2019.06.038.

    Article  PubMed  Google Scholar 

  9. Oki M, Saka H, Kitagawa C, et al. Visceral pleural perforation in two cases of ultrathin bronchoscopy. Chest. 2005;127:2271–3.

    Article  Google Scholar 

  10. Izumo T, Sasada S, Chavez C, et al. Radial endobronchial ultrasound images for ground-glass opacity pulmonary lesions. Eur Respir J. 2015;45:1661–8.

    Article  Google Scholar 

  11. Steinfort DP, Khor YH, Manser RL, et al. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J. 2011;37:902–10.

    Article  CAS  Google Scholar 

  12. Memoli JSW, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142:385–93.

    Article  Google Scholar 

  13. Tay JH, Irving L, Antippa P, et al. Radial probe endobronchial ultrasound: factors influencing visualization yield of peripheral pulmonary lesions. Respirology. 2013;18:185–90.

    Article  Google Scholar 

  14. Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004;126:959–65.

    Article  Google Scholar 

  15. Yamada N, Yamazaki K, Kurimoto N, et al. Factors related to diagnostic yield of transbronchial biopsy using endobronchial ultrasonography with a guide sheath in small peripheral pulmonary lesions. Chest. 2007;132:603–8.

    Article  Google Scholar 

  16. Chen A, Chenna P, Loiselle A, et al. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience. Ann Am Thorac Soc. 2014;11:578–82.

    Article  Google Scholar 

  17. Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011;66:1072–7.

    Article  Google Scholar 

  18. Asano F, Eberhardt R, Herth FJ. Virtual bronchoscopic navigation for peripheral pulmonary lesions. Respiration. 2014;88:430–40.

    Article  Google Scholar 

  19. Gex G, Pralong JA, Combescure C, et al. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration. 2014;87:165–76.

    Article  Google Scholar 

  20. Folch EE, Bowling MR, Gildea TR, et al. Design of a prospective, multicenter, global, cohort study of electromagnetic navigation bronchoscopy. BMC Pulm Med. 2016;16:60.

    Article  Google Scholar 

  21. Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol. 2019;14:445–58.

    Article  Google Scholar 

  22. Seijo LM, de Torres JP, Lozano MD, et al. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: results from a prospective study. Chest. 2010;138:1316–21.

    Article  Google Scholar 

  23. Bowling MR, Kohan MW, Walker P, et al. The effect of general anesthesia versus intravenous sedation on diagnostic yield and success in electromagnetic navigation bronchoscopy. J Bronchol Interv Pulmonol. 2015;22:5–13.

    Article  Google Scholar 

  24. Herth FJ, Eberhardt R, Sterman D, et al. Bronchoscopic transparenchymal nodule access (BTPNA): first in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax. 2015;70:326–32.

    Article  Google Scholar 

  25. Harzheim D, Sterman D, Shah PL, et al. Bronchoscopic transparenchymal nodule access: feasibility and safety in an endoscopic unit. Respiration. 2016;91:302–6.

    Article  Google Scholar 

  26. Anciano C, Brown C, Bowling M. Going off road: the first case reports of the use of the transbronchial access tool with electromagnetic navigational bronchoscopy. J Bronchol Interv Pulmonol. 2017;24:253–6.

    Article  Google Scholar 

  27. Bowling MR, Brown C, Anciano CJ. Feasibility and safety of the transbronchial access tool for peripheral pulmonary nodule and mass. Ann Thorac Surg. 2017;104:443–9.

    Article  Google Scholar 

  28. Sobieszczyk MJ, Yuan Z, Li W, et al. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: a retrospective analysis. J Thorac Dis. 2018;10:5953–9.

    Article  Google Scholar 

  29. Yamashita S, Yoshida Y, Iwasaki A. Robotic surgery for thoracic disease. Ann Thorac Cardiovasc Surg. 2016;22:1–5.

    Article  Google Scholar 

  30. Peters BS, Armijo PR, Krause C, et al. Review of emerging surgical robotic technology. Surg Endosc. 2018;32:1636–55.

    Article  Google Scholar 

  31. Boskoski I, Costamagna G. Endoscopy robotics: current and future applications. Dig Endosc. 2019;31:119–24.

    Article  Google Scholar 

  32. Li Z, Chiu PW. Robotic endoscopy. Visc Med. 2018;34:45–51.

    Article  Google Scholar 

  33. Rojas-Solano JR, Ugalde-Gamboa L, Machuzak M. Robotic bronchoscopy for diagnosis of suspected lung cancer: a feasibility study. J Bronchol Interv Pulmonol. 2018;25:168–75.

    Google Scholar 

  34. Murgu SD. Robotic assisted-bronchoscopy: technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm Med. 2019;19:89.

    Article  Google Scholar 

  35. Chen AC, Gillespie CT. Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg. 2018;106:293–7.

    Article  Google Scholar 

  36. Schumann C, Hetzel M, Babiak AJ, et al. Endobronchial tumor debulking with a flexible cryoprobe for immediate treatment of malignant stenosis. J Thorac Cardiovasc Surg. 2010;139:997–1000.

    Article  Google Scholar 

  37. Babiak A, Hetzel J, Krishna G, et al. Transbronchial cryobiopsy: a new tool for lung biopsies. Respiration. 2009;78:203–8.

    Article  Google Scholar 

  38. Griff S, Ammenwerth W, Schonfeld N, et al. Morphometrical analysis of transbronchial cryobiopsies. Diagn Pathol. 2011;6:53.

    Article  Google Scholar 

  39. Hetzel J, Eberhardt R, Herth FJ, et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: a multicentre trial. Eur Respir J. 2012;39:685–90.

    Article  CAS  Google Scholar 

  40. Schuhmann M, Bostanci K, Bugalho A, et al. Endobronchial ultrasound-guided cryobiopsies in peripheral pulmonary lesions: a feasibility study. Eur Respir J. 2014;43:233–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yasufuku.

Ethics declarations

Conflict of interest

Kazuhiro Yasufuku received research funding from Olympus Corporation and Zidan Medical Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiwata, T., Gregor, A., Inage, T. et al. Bronchoscopic navigation and tissue diagnosis. Gen Thorac Cardiovasc Surg 68, 672–678 (2020). https://doi.org/10.1007/s11748-019-01241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-019-01241-0

Keywords

Navigation