Skip to main content
Log in

A review on process-induced distortions of carbon fiber reinforced thermosets for large-scale production

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

During the manufacturing process of carbon fiber reinforced plastics, residual stresses and shape distortions occur. Analytical or numerical models can be employed to accurately predict these stresses and deformations. For a virtual compensation of a part’s geometry, an understanding of the main driving mechanisms behind process-induced distortions is essential. The present study shows main sources as well as influencing factors on stresses and distortions that arise during large-scale production of composites based on thermoset resin systems. Besides basic information on the thermal, chemical and mechanical behavior of thermoset resins and carbon fibers, state-of-the-art numerical approaches are reviewed with a focus on finite element discretization and constitutive modeling. Current virtual compensation strategies as well as possible influences of the forming operation are discussed. Finally, a conclusion is drawn that includes recommendations for future developments in the field of process-induced distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Industrievereinigung Verstärkte Kunststoffe e.V (2010) Handbuch Faserverbundkunststoffe. Vieweg and Teubner

  2. Roll K, Lemke T, Wiegand K, Smith LM, Pourboghrat F, Cao J, Stoughton TB, Yoon J-W, Shi MF, Wang C-T, et al (2005) Possibilities and strategies for simulations and compensation for springback. AIP Conf Proc 778(1):295–302

  3. Neitzel M, Mitschang P, Breuer U (2014) Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung, Anwendung. Carl Hanser Verlag GmbH Co KG

  4. Tucker N, Lindsey K (2002) An introduction to automotive composites. iSmithers Rapra Publishing

  5. Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer

  6. Aronhime MT, Gillham JK (1986) Time-temperature-transformation (TTT) cure diagram of thermosetting polymeric systems. In: Epoxy Resins and Composites III. Springer, pp 83–113

  7. Khoun L (2009) Process-induced stresses and deformations in woven composites manufactured by resin transfer moulding. Dissertation, McGill University

  8. Brady R (1992) Recent advances in the development of expanding monomers: synthesis, polymerization and volume change. J Macromol Sci-Rev Macromol Chem Phys C 32:135–181

  9. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing and design. CRC press

  10. Wisnom M, Gigliotti M, Ersoy N, Campbell M, Potter K (2006) Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures. Compos Part A Appl Sci Manuf 37(4):522–529

    Article  Google Scholar 

  11. Albert C, Fernlund G (2002) Spring-in and warpage of angled composite laminates. Compos Sci Technol 62(14):1895–1912

    Article  Google Scholar 

  12. Radford D, Rennick T (2000) Separating sources of manufacturing distortion in laminated composites. J Reinf Plast Compos 19(8):621–641

    Article  Google Scholar 

  13. Flemming M, Roth S (2013) Faserverbundbauweisen Eigenschaften: mechanische, konstruktive, thermische, elektrische, ökologische, wirtschaftliche Aspekte, Bd. 4. Springer-Verlag

  14. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier

  15. Shimbo M, Ochi M, Shigeta Y (1981) Shrinkage and internal stress during curing of epoxide resins. J Appl Poly Sci 26(7):2265–2277

    Article  Google Scholar 

  16. Ersoy N, Tugutlu M (2010) Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite. Polym Eng Sci 50(1):84–92

    Article  Google Scholar 

  17. Nelson RH, Cairns D (1989) Prediction of dimensional changes in composite laminates during cure. Tomorrow’s Mater Today 34:2397–2410

    Google Scholar 

  18. Ersoy N, Potter K, Wisnom MR, Clegg MJ (2005) Development of spring-in angle during cure of a thermosetting composite. Compos A Appl Sci Manuf 36(12):1700–1706

    Article  Google Scholar 

  19. Wijskamp S (2005) Shape distortions in composites forming. Dissertation, University of Twente

  20. Cho M, Kim M-H, Choi HS, Chung CH, Ahn K-J, Eom YS (1998) A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects. J Compos Mater 32(5):460–482

    Article  Google Scholar 

  21. Gigliotti M, Jacquemin F, Vautrin A (2005) On the maximum curvatures of 0/90 plates under thermal stress. Compos Struct 68(2):177–184

    Article  Google Scholar 

  22. Radford D, Diefendorf R (1993) Shape instabilities in composites resulting from laminate anisotropy. J Reinf Plast Compos 12(1):58–75

    Article  Google Scholar 

  23. Hyer M, Rousseau C, Tompkins S (1988) Thermally induced twist in graphite-epoxy tubes. J Eng Mater Technol 110(2):83–88

    Article  Google Scholar 

  24. Prasatya P, McKenna GB, Simon SL (2001) A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: effects of processing parameters. J Compos Mater 35(10):826–848

    Article  Google Scholar 

  25. Twigg G, Fernlund G, Poursartip A (2001) Measurement of tool-part interfacial stress during the processing of composite laminates. In: Sixteenth Technical Conference of the American Society for Composites

  26. Twigg G, Poursartip A, Fernlund G (2004) Tool-part interaction in composites processing. Part I: experimental investigation and analytical model. Compos A Appl Sci Manuf 35(1):121–133

    Article  Google Scholar 

  27. Khoun L, Hubert P (2010) Investigation of the dimensional stability of carbon epoxy cylinders manufactured by resin transfer moulding. Compos A Appl Sci Manuf 41(1):116–124

    Article  Google Scholar 

  28. Spröwitz T, Huehne C, Kappel E (2009) Thermal aspects for composite structures—from manufacturing to in-service predictions. In: CEAS 2009 European Air and Space Conference

  29. Bogetti TA, Gillespie JW (1992) Process-induced stress and deformation in thick-section thermoset composite laminates. J Compos Mater 26(5):626–660

    Article  Google Scholar 

  30. Ruiz E, Trochu F (2005) Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos A Appl Sci Manuf 36(6):806–826

    Article  Google Scholar 

  31. Radford DW (1993) Cure shrinkage induced warpage in flat uni-axial composites. J Compos Tech Res 15(4):290–296

    Article  Google Scholar 

  32. Radford DW (1995) Volume fraction gradient induced warpage in curved composite plates. Compos Eng 5(7):923–927

    Article  Google Scholar 

  33. Yang S, Huang C, Chen C (2003) Effect of processing on precision of composite panels. Mater Manuf Process 18(5):769–781

    Article  Google Scholar 

  34. Causse P, Ruiz E, Trochu F (2012) Spring-in behavior of curved composites manufactured by Flexible Injection. Compos A Appl Sci Manuf 43(11):1901–1913

    Article  Google Scholar 

  35. Wisnom MR, Potter KD, Ersoy N (2007) Shear-lag analysis of the effect of thickness on spring-in of curved composites. J Compos Mater 41(11):1311–1324

    Article  Google Scholar 

  36. Wiersma H, Peeters L, Akkerman R (1998) Prediction of springforward in continuous-fibre/polymer L-shaped parts. Compos A Appl Sci Manuf 29(11):1333–1342

    Article  Google Scholar 

  37. Patterson JM, Springer GS, Kollar LP (1991) Experimental observations of the spring-in phenomenon. In: Eighth International Conference on Composite Materials

  38. Kim C-G, Kim T-W, Kim I-G, Jun E-J (1989) Spring-in deformation of composite laminated bends. In: Proceedings of the 7th international conference on composite materials (ICCM7), Bd. 83-8

  39. Zhu Q, Geubelle PH, Li M, Tucker CL III (2001) Dimensional accuracy of thermoset composites: simulation of process-induced residual stresses. J Compos Mater 35(24):2171–2205

    Article  Google Scholar 

  40. Ochinero T, Hyer M (2001) Warpage of large curved composite panels due to manufacturing anomalies. In: Sixteenth Technical Conference of the American Society for Composites

  41. Long A, Clifford M (2007) Composite forming mechanisms and material characterisation. Compos Form Technol, pp 1–21

  42. Mesogitis T, Skordos AA, Long A (2015) Stochastic simulation of the influence of fibre path variability on the formation of residual stress and shape distortion. Polym Compos

  43. Lamers EAD (2004) Shape distortions in fabric reinforced composite products due to processing induced fibre reorientation. Dissertation, University of Twente

  44. Huang C, Yang S (1997) Warping in advanced composite tools with varying angles and radii. Compos A Appl Sci Manuf 28(9–10):891–893

    Article  Google Scholar 

  45. Kappel E, Stefaniak D, Spröwitz T, Hühne C (2011) A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts. Compos A Appl Sci Manuf 42(12):1985–1994

    Article  Google Scholar 

  46. Sarrazin H, Kim B, Ahn S-H, Springer GS (1995) Effects of processing temperature and layup on springback. J Compos Mater 29(10):1278–1294

    Article  Google Scholar 

  47. Sun L, Pang S-S, Sterling AM, Negulescu II, Stubblefield MA (2002) Dynamic modeling of curing process of epoxy prepreg. J Appl Polym Sci 86(8):1911–1923

    Article  Google Scholar 

  48. White S, Hahn H (1993) Cure cycle optimization for the reduction of processing-induced residual stresses in composite materials. J Compos Mater 27(14):1352–1378

    Article  Google Scholar 

  49. Kollår LP (1994) Approximate analysis of the temperature induced stresses and deformations of composite shells. J Compos Mater 28(5):392–414

    Article  Google Scholar 

  50. Jain LK, Mai Y-W (1996) On residual stress induced distortions during fabrication of composite shells. J Reinf Plast Compos 15(8):793–805

    Article  Google Scholar 

  51. Yoon K, Kim J-S (2001) Effect of thermal deformation and chemical shrinkage on the process induced distortion of carbon/epoxy curved laminates. J Compos Mater 35(3):253–263

    Article  Google Scholar 

  52. Johnston A, Vaziri R, Poursartip A (2001) A plane strain model for process-induced deformation of laminated composite structures. J Compos Mater 35(16):1435–1469

    Article  Google Scholar 

  53. Çınar K, Ersoy N, Öz F (2012) 3D process modelling for distortions in manufacturing of polymer composite materials. In: 15th European Conference on Composite Materials

  54. Roozbehjavan P, Tavakol B, Ahmed A, Koushyar H, Das R, Joven R, Minaie B (2014) Experimental and numerical study of distortion in flat, L-shaped, and U-shaped carbon fiber-epoxy composite parts. J Appl Polym Sci 131. https://doi.org/10.1002/app.40439

  55. Wang J, Kelly D, Hillier W (2000) Finite element analysis of temperature induced stresses and deformations of polymer composite components. J Compos Mater 34(17):1456–1471

    Article  Google Scholar 

  56. Dassault Systèmes (2013) Abaqus analysis user’s guide (6.13)

  57. Jain LK, Mai Y-W (1997) Stresses and deformations induced during manufacturing. Part I: theoretical analysis of composite cylinders and shells. J Compos Mater 31(7):672–695

    Article  Google Scholar 

  58. Bapanapalli SK, Smith LV (2005) A linear finite element model to predict processing-induced distortion in FRP laminates. Compos A Appl Sci Manuf 36(12):1666–1674

    Article  Google Scholar 

  59. Amann C, Kreissl S, Grass H, Meinhardt J, Merklein M (2016) Industrial distortion simulation of fibre reinforced plastics - a study on finite element discretisation. Adv Mater Res 1140:272–279

  60. Chachad Y, Roux J, Vaughan J, Arafat E (1995) Three-dimensional characterization of pultruded fiberglass-epoxy composite materials. J Reinf Plast Compos 14(5):495–512

    Article  Google Scholar 

  61. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für physikalische Chemie 4(1):226–248

    Google Scholar 

  62. DiBenedetto A (1987) Prediction of the glass transition temperature of polymers: a model based on the principle of corresponding states. J Polym Sci Part B Polym Phys 25(9):1949–1969

    Article  Google Scholar 

  63. Nawab Y, Shahid S, Boyard N, Jacquemin F (2013) Chemical shrinkage characterization techniques for thermoset resins and associated composites. J Mater Sci 48(16):5387–5409

    Article  Google Scholar 

  64. Li C, Potter K, Wisnom MR, Stringer G (2004) In-situ measurement of chemical shrinkage of MY750 epoxy resin by a novel gravimetric method. Compos Sci Technol 64(1):55–64

    Article  Google Scholar 

  65. Darrow DA, Smith LV (2002) Isolating components of processing induced warpage in laminated composites. J Compos Mater 36(21):2407–2419

    Article  Google Scholar 

  66. Nielsen MW (2012) Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates. Dissertation, Technical University of Denmark

  67. Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity. Springer

  68. Baran I, Cinar K, Ersoy N, Akkerman R, Hattel JH (2016) A review on the mechanical modeling of composite manufacturing processes. Arch Comput Methods Eng 24(2):365–395

  69. Svanberg JM, Holmberg JA (2004) Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model. Compos A Appl Sci Manuf 35(6):711–721

    Article  Google Scholar 

  70. Svanberg JM, Holmberg JA (2004) Prediction of shape distortions. Part II. Experimental validation and analysis of boundary conditions. Compos A Appl Sci Manuf 35(6):723–734

    Article  Google Scholar 

  71. Ding A, Li S, Wang J, Ni A, Sun L, Chang L (2016) Prediction of process-induced distortions in L-shaped composite profiles using path-dependent constitutive law. Appl Compos Mater 23(5):1027–1045

    Article  Google Scholar 

  72. Ding A, Li S, Sun J, Wang J, Zu L (2016) A comparison of process-induced residual stresses and distortions in composite structures with different constitutive laws. J Reinf Plast Compos 35(10):807–823

    Article  Google Scholar 

  73. Johnston AA (1997) An integrated model of the development of process-induced deformation in autoclave processing of composite structures. Dissertation, University of British Columbia

  74. Baran I, Hattel JH, Tutum C (2013) The impact of process parameters on the residual stresses and distortions in pultrusion. In: Proceedings of 19th International Conference on Composite Materials

  75. Voigt W (1889) Über die Beziehung zwischen den beiden Elastizitätsconstanten isotroper Körper. Wiedemanns Annalen der Physik 274(12):573–587

    Article  MATH  Google Scholar 

  76. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58

    Article  MATH  Google Scholar 

  77. Chamis CC (1989) Mechanics of composite materials: past, present, and future. J Compos Tech Res 11(1):3–14

    Article  Google Scholar 

  78. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  79. Hill R (1965) Theory of mechanical properties of fibre-strengthened materials-III. Self-consistent model. J Mech Phys Solids 13(4):189–198

    Article  Google Scholar 

  80. Huang Z-M (2001) Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model. Compos A Appl Sci Manuf 32(2):143–172

    Article  Google Scholar 

  81. Younes R, Hallal A, Fardoun F, Chehade FH (2012) Comparative review study on elastic properties modeling for unidirectional composite materials. In: Composites and their properties. intech

  82. Karadeniz ZH, Kumlutas D (2007) A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos Struct 78(1):1–10

    Article  Google Scholar 

  83. Chamis CC (1984) Simplified composite micromechanics equations for strength, fracture toughness, impact resistance and environmental effects. In: NASA TM-83696

  84. Gereke T, Döbrich O, Hübner M, Cherif C (2013) Experimental and computational composite textile reinforcement forming: a review. Compos A Appl Sci Manuf 46:1–10

    Article  Google Scholar 

  85. Sweeting R, Liu X, Paton R (2002) Prediction of processing-induced distortion of curved flanged composite laminates. Compos Struct 57(1):79–84

    Article  Google Scholar 

  86. Lamers E, Wijskamp S, Akkerman R (2004) Modelling shape distortions in composite products. Langmuir

  87. Hein R, Wille T, Gabtni K, Dias J-P (2015) Prediction of process-induced distortions and residual stresses of a composite suspension blade. Defect Diffus Forum 362:224–243

  88. Dix M (2016) Eine durchgängig virtuelle Faserverbundprozesskette am Beispiel des RTM Prozesses. Dissertation, Technische Universität München

  89. Amann C, Liebold C, Kreissl S, Grass H, Meinhardt J, Merklein M (2016) Berücksichtigung der umformbedingten Faser-Reorientierung bei der Verzugssimulation von CFK-Bauteilen. In: 14. Deutsches LS-DYNA Forum

  90. Huang C, Yang S (1997) Study on accuracy of angled advanced composite tools. Mater Manuf Process 12(3):473–486

    Article  MathSciNet  Google Scholar 

  91. Fernlund G, Floyd A, McKay S (2007) Process analysis and tool compensation for curved composite L-angles. In: The 6th Canadian international composites conference

  92. Zhu Q, Geubelle PH (2002) Dimensional accuracy of thermoset composites: shape optimization. J Compos Mater 36(6):647–672

    Article  Google Scholar 

  93. Wucher B, Lani F, Pardoen T, Bailly C, Martiny P (2014) Tooling geometry optimization for compensation of cure-induced distortions of a curved carbon/epoxy C-spar. Compos A Appl Sci Manuf 56:27–35

    Article  Google Scholar 

  94. Capehart T, Muhammad N, Kia HG (2007) Compensating thermoset composite panel deformation using corrective molding. J Compos Mater 41(14):1675–1701

    Article  Google Scholar 

  95. Mezeix L, Seman A, Nasir M, Aminanda Y, Rivai A, Castanie B, Olivier P, Ali KM (2015) Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process. Compos Struct 124:196–205

    Article  Google Scholar 

  96. Ghiasi H, Rahmat M, Hubert P, Lessard L (2009) Curved composite structures and compromise between process-induced deformations and structural performance. In: 18th international conference on composite materials

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Amann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amann, C., Kreissl, S., Grass, H. et al. A review on process-induced distortions of carbon fiber reinforced thermosets for large-scale production. Prod. Eng. Res. Devel. 11, 665–675 (2017). https://doi.org/10.1007/s11740-017-0772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0772-1

Keywords

Navigation