Skip to main content
Log in

Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Process dynamics have a significant effect on the formation of unwanted weld defects like pores in deep penetration laser beam welding. The dynamics of the keyhole, typically evolving in the process, are assumed to be one of the main influencing factors on the welding process. One of the factors influencing the keyhole dynamics is the laser intensity distribution. In order to get a better understanding of the formation of weld defects, the influence of the focal spatial laser intensity distribution on keyhole dynamics is investigated in this work. An analytical description is presented, that offers the possibility to quickly calculate the keyhole dynamics for different spatial laser intensity distributions. Frequency analysis of the calculated keyhole dynamics show that a top hat intensity distribution leads to higher maximum frequencies of the keyhole oscillations compared to a Gaussian beam profile. Experiments using process observation of acoustic emissions confirm the model´s results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khan M, Romoli L, Dini G, Fiaschi M (2011) A simplified energy-based model for laser welding of ferritic stainless steels in overlap configurations. CIRP Ann E 60(1):215

    Article  Google Scholar 

  2. Schmidt M, Otto A, Kägeler C, Geiger M (2008) Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Ann E 57(1):213

    Article  Google Scholar 

  3. Matsunawa A, Kim JD, Katayama S, Semak V (1996) Experimental and theoretical studies on keyhole dynamics in laser welding. In: Proceedings of 15th International Congress on Application of Lasers and Electro-Optics (ICALEO), LIA Congress Proceeding, vol 81, pp 58–67

  4. Otto A, Koch H, Leitz KH, Schmidt M (2011) Numerical simulations—a versatile approach for better understanding dynamics in laser material processing. Phys Procedia 12: 11–20, World of Photonics Congress, 2011, Munich, Germany

  5. Märten O, Wolf S, Hänsel K, Schwede H, Kramer R (2010) Qualifizierung von Fokussier- und Abbildungssystemen für die industrielle Laserbearbeitung mit brillanten Strahlquellen im Multikilowattbereich. 7. In: Vollertsen F, Reitemeyer D (eds) Laser-Anwenderforum (LAF’10), Bd. 40. BIAS, Bremen (in German)

  6. Kaplan AFH (2011) Influence of the beam profile formulation when modeling fiber-guided laser welding. J Laser Appl 23(4):042005-1–042005-9

    Article  Google Scholar 

  7. Geiger M, Leitz KH, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng Res Devel 3(2):127–136

    Article  Google Scholar 

  8. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2013) Numerical simulation of electromagnetic melt control systems in high power laser beam welding. In: Proceedings of 32nd International Congress on Application of Lasers and Electro-Optics (ICALEO), LIA Congress Proceeding. Paper 401

  9. Fabbro R (2009) Limiting process for keyhole propagation during deep penetration laser welding. In: Proceeding of 5th International Congress on Laser Advanced Materials Processing (LAMP)

  10. Hügel H, Graf T (2009) Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren. Vieweg + Teubner, Stuttgart

    Book  Google Scholar 

  11. Cho W, Na S, Thomy C, Vollertsen F (2012) Numerical simulation of molten pool dynamics in high power disk laser welding. J Mater Process Technol 212(2012):262–275

    Article  Google Scholar 

  12. Berger P, Schuster R, Hügel H, Graf T (2010) Moving humps at the capillary front in laser welding. In: Proceedings of 29th International Congress on Application of Lasers and Electro-Optics (ICALEO), LIA Congress Proceeding. Paper 106, pp 26–30

  13. Kaplan A (2013) Angle- and absorptivity-modulation at inclined wavy processing fronts. In: Proceedings of 6th International Congress on Laser Advanced Materials Processing (LAMP)

  14. Andrews JG, Attey DR (1976) Hydrodynamic limit to penetration of a material by a high-power beam. J Phys D Appl Phys 9:2181

    Article  Google Scholar 

  15. Kroos J, Gratzke U, Simon G (1993) Towards a self-consistent model of the keyhole in penetration laser beam welding. J Phys D Appl Phys 26(1993):474–480

    Article  Google Scholar 

  16. Klein T, Vicanek M, Simon G (1996) Forced oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 29(1996):322–332

    Article  Google Scholar 

  17. Kroos J, Gratzke U, Vicanek M, Simon G (1993) Dynamic behavior of the keyhole in laser welding. J Phys D Appl Phys 26:481–486

    Article  Google Scholar 

  18. Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27(1994):2023–2030

    Article  Google Scholar 

  19. Ki H, Mohanty P, Mazumder J (2002) Modeling of laser keyhole welding: Part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans 33A:1817–1830

    Article  Google Scholar 

  20. Solana P, Ocana JL (1997) A mathematical model for penetration laser welding as a free-boundary problem. J Phys D Appl Phys 30(1997):1300–1313

    Article  Google Scholar 

  21. Kägeler C, Schmidt M (2012) Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets. Laser Assisted Net Shape Engineering (LANE 2012). In: Schmidt M, Vollertsen F, Geiger F (eds) Physics Procedia, vol 39. Elsevier B.V, Amsterdam, pp 447–453

  22. Geiger M, Kägeler C, Schmidt M (2008) High-power laser welding of contaminated steel sheets. Produc Eng Res Devel 2:235–240

    Article  Google Scholar 

  23. Hoffman J, Szymanski Z, Jakubowski J, Kolasa A (2002) Analysis of acoustic and optical signals used as a basis for controlling laser-welding processes. Weld Int 16(1):18–25

    Article  Google Scholar 

  24. Semak V, Hopkins J, McCay M, McCay T (1995) Melt pool dynamics during laser welding. J Phys D Appl Phys 28(1995):2443–2450

    Article  Google Scholar 

  25. Klassen, M. (2000) Prozessdynamik und resultierende Prozessinstabilitäten beim Laserstrahlschweißen von Aluminiumlegierungen. BIAS, Bremen (in German)

  26. Berger P, Hügel H, Graf T (2011) Understanding pore formation in laser beam welding. In: Schmidt M, Zaeh MF, Graf T, Ostendorf A (eds) Lasers in manufacturing (LIM 2011), Physics Procedia, vol 12, Elsevier Amsterdam, pp 241–247

  27. Katayama S, Kawahito Y, Mizutani M (2007) Plume behaviour and melt flows during laser and hybrid welding. In: Vollertsen F, Emmelmann C, Schmidt M, Otto A (eds) Lasers in Manufacturing (LIM 2007), Elsevier, Amsterdam, pp 265–272

  28. Abt F, Boley M, Weber R, Graf T, Popko G, Nau S (2011) Novel X-ray system for in situ diagnostic of laser based processes—first experimental results. In: Schmidt M, Zaeh MF, Graf T, Ostendorf A (eds) Lasers in Manufacturing (LIM 2011), Physics Procedia, vol 12. Elsevier, Amsterdam, pp 761–770

  29. Fabbro R, Slimani S, Coste F, Briand F, Dlubak B, Loisel G (2006) Analysis of basic processes inside the keyhole during deep penetration Nd:YAG cw laser welding. In: Proceeding of 25th International Congress on Applications of Lasers and Electro-Optics (ICALEO), LIA Congress Proceeding, vol 101

  30. Volpp J, Freimann D (2013) Indirect measurement of keyhole pressure oscillations during laser deep penetration welding. In: Proceeding of 32nd International Congress on Applications of Lasers and Electro-Optics (ICALEO), LIA Congress Proceeding. Paper 1301, pp 334–340

  31. Bley H, Weyand L, Luft A (2007) An alternative approach for the cost-efficient laser welding of zinc-coated sheet metal. CIRP Ann Manuf Technol 56(1):17–20

    Article  Google Scholar 

  32. Dausinger F (1995) Strahlwerkzeug Laser: Energieeinkopplung und Prozesseffektivität. Teubner, Stuttgart

    Google Scholar 

  33. Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole behaviour for full penetration Nd YAG CW laser welding. J Phys D Appl Phys 38(2005):1881–1887

    Article  Google Scholar 

  34. Volpp J (2012) Investigation on the influence of different laser beam intensity distributions on keyhole geometry during laser welding. In: Schmidt M, Vollertsen F, Geiger M (eds) Laser Assisted Net Shape Engineering (LANE 2012), Physics Procedia 39/2012. Elsevier B.V, Amsterdam, pp 17–21

  35. Jüptner, W. (1975) Untersuchungen zum Einbrandverhalten eines Elektronenstrahls unter Berücksichtigung der Strahlgeometrie. Hochschulschrift (in German)

  36. Matsunawa A, Semak V (1997) The simulation of front keyhole wall dynamics during laser welding. J Phys D Appl Phys 30(1997):798–809

    Article  Google Scholar 

  37. Kroos J (1993) Stabilität und Dynamik der Dampfkapillare beim Laserstrahlschweißen von Metallen. PhD thesis, Technische Universität Braunschweig (in German)

  38. Poprawe R (2005) Lasertechnik für die Fertigung. Springer, Berlin Heidelberg

    Google Scholar 

  39. Weberpals J-P (2010) Nutzen und Grenzen guter Fokussierbarkeit beim Laserschweißen. Herbert Utz Verlag GmbH, München (in German)

    Google Scholar 

  40. Volpp J, Vollertsen F (2013) Analytical modeling of the keyhole including multiple reflections for analysis of the influence of different laser intensity distributions on keyhole geometry. In: Emmelmann C, Zaeh MF, Graf T, Schmidt M (eds) Lasers in Manufacturing (LIM 2013), Physics Procedia, vol 41. Elsevier, Amsterdam, pp 453–461

  41. Pleteit H (2001) Analyse und Modellierung der Keyhole-Dynamik beim Laserstrahlschweißen von Aluminiumlegierungen. Bremen, Univ., Diss. (in German)

  42. Brands EA, Brook GB (1992) Smithells Metals Reference Book. Butterworth-Heinemann Ltd, Oxford

    Google Scholar 

  43. Geiger M, Leitz K-H, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng Res Devel 3:127–136

    Article  Google Scholar 

  44. Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Clarendon Press, Oxford

    Google Scholar 

  45. Windisch H (2006) Thermodynamik – Ein Lehrbuch für Ingenieure. Oldenbourg Wissenschaftsverlag GmbH, München

    Google Scholar 

  46. Beyer E (1995) Schweißen mit Laser: Grundlagen (Laser in Technik und Forschung). Springer, Berlin

    Book  Google Scholar 

  47. Pang S, Chen L, Zhou J, Yin Y, Chen T (2011) A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. J Phys D Appl Phys 44:87–102

    Article  Google Scholar 

  48. Gatzen M, Thomy C, Vollertsen F (2012) Analytical investigation of the influence of the spatial laser beam intensity distribution on keyhole dynamics in laser beam welding. Lasers in Eng. 23(1–2):109–122

    Google Scholar 

  49. MacCormack E, Mandelis A, Munidasa M, Farahbakhsh B, Sang H (1997) Measurements of thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry: theory and experiment. Int J Thermophys 18(1):025301-1–025301-15

    Google Scholar 

Download references

Acknowledgments

This work was accomplished within the Center of Competence for Welding of Aluminum Alloys (Centr-Al). Funding by the DFG – Deutsche Forschungsgemeinschaft (VO 530/52-1) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Volpp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpp, J., Vollertsen, F. Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. Prod. Eng. Res. Devel. 9, 167–178 (2015). https://doi.org/10.1007/s11740-014-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0594-3

Keywords

Navigation