Skip to main content
Log in

Development of analytical model for orthogonal cutting

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Knowledge about energetic consumption during machining processes is of great importance. This knowledge can be obtained with different simulation tools such as, for example, cutting models, among which analytical cutting models have built up a good reputation. This is due to a theoretical interest in understanding the physical phenomenon arising in the shear zones as well as a practical interest in very short computing times. The analytical model of orthogonal cutting presented in this paper was developed with the variational principles of the plasticity theory due to the principle of minimum energy. The development of the cutting model was based on the breaking speed field of the machined material’s plastic flow. The analytical cutting model developed guarantees calculating all essential energetic and kinetic process parameters, including contact length and shear angle as well as the forces on the flank face of the wedge. The cutting model proposed can be used for calculating the basic characteristics of a cutting process in practice and for further investigating machining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. Ann CIRP 58(2):588–607

    Article  Google Scholar 

  2. Großmann K, Mühl A (2004) Gekoppelte Simulation der Systemdynamik von Werkzeugmaschine und Zerspanungsprozess. Seminarberichte Strukturdynamik

  3. Heisel U, Storchak M, Krivoruchko DV, Braun S (2010) Modeling of interaction processes in cutting. In: Proceeding 2nd International Conference Process Machine Interactions, June 10–11, 2010

  4. Denkena B, Tönshoff HK (2013) Spanen. Grundlagen. Springer, Berlin

    Google Scholar 

  5. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York

    Google Scholar 

  6. Kienzle O, Victor H (1956) Zerspanungstechnische Grundlagen für die kräftemäßige Berechnung und den Einsatz von Drehbänken. Hobelmaschinen und Bohrmaschinen. Werkstatttechnik und Maschinenbau 46(6):283–288

    Google Scholar 

  7. Rott O, Hömberg D, Mense C (2006) A comparison of analytical cutting force models. WIAS, Berlin, p 23 Preprint No. 1151

    Google Scholar 

  8. Boston OW (1945) A bibliography on cutting of metals, 1864–1943. ASME, New York

    Google Scholar 

  9. Childs T, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining: theory and applications. Wiley, New York

    Google Scholar 

  10. Finnie E (1956) Review of the metal-cutting analyses of the past hundred years. ASME 78(8):715–721

    Google Scholar 

  11. Hucks H (1952) Plastizitaetsmechanische Theorie der Spanbildung, « Werkstatt und Betrieb», Band 85, S. 1–6

  12. Jaspers S (1999) Metal cutting mechanics and material behaviour. Dissertation Technische Universität, Eindhoven, 152 S

  13. Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process—Part I: predictions of tool forces, stresses, and temperature distributions. J Manuf Sci Eng 128:435–444

    Article  Google Scholar 

  14. Karpat Y, Özel T (2008) Analytical and thermal modeling of high-speed machining with chamfered tools. J Manuf Sci Eng 130:1–15

    Article  Google Scholar 

  15. Komanduri R (1993) Machining and grinding: a historical review of the classical papers. Appl Mech Rev 46(3):80–132

    Article  Google Scholar 

  16. Leopold J (1999) Mechanical and physical models of machining. In: Nantes, 24–25 January, Proceedings of the Second CIRP Workshop on Modeling of Machining Operations

  17. Li B, Wang X, Hu Y, Li C (2011) Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int J Adv Manuf Technol 54:431–443

    Article  MathSciNet  Google Scholar 

  18. Merchant ME (1945) Mechanics of the metal cutting process. J Appl Phys 16(6):318–324

    Article  Google Scholar 

  19. Merchant ME (2003) Twentieth Century evolution of machining in the United States—an interpretative review. J SADHANA 28(5):867–874

    Article  Google Scholar 

  20. Molinari A, Cheriguene R, Miguelez H (2011) Numerical and analytical modeling of orthogonal cutting: the link between local variables and global contact characteristics. Int J Mech Sci 53:183–206

    Article  Google Scholar 

  21. Oxley PLB (1989) Mechanics of machining, an analytical approach to assessing machinability. Ellis Horwood, Chichester

    Google Scholar 

  22. Time IA (1873) Resistance by cutting of metal and wood. Dermacow, St. Petersburg

    Google Scholar 

  23. Tönshoff HK, Arendt C, Ben Amor R (2000) Cutting of hardened steel. Ann CIRP 49(2):547–566

    Article  Google Scholar 

  24. Zvorikin KA (1893) Required work and force for separation of metal chip. In: Engineering Collection and Manufacturing News, Moscow

  25. Zhou F (2014) A new analytical tool-chip friction model in dry cutting. Int J Adv Manuf Technol 70(1–4):309–319

    Article  Google Scholar 

  26. Usui E, Shirakashi T (1982) Mechanics of metal cutting—From “Description” to “Predictive” Theory’, On the Art of Cutting Metals—75 Years Later, Phoenix: Production Engineering Division (PED). ASME 7:13–25

    Google Scholar 

  27. Astakhov VP (1999) Metal Cutting Mechanics. CRC Press, London, New York

    Google Scholar 

  28. Astakhov VP, Xiao X (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach Sci Technol 12(3):325–347

    Article  Google Scholar 

  29. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 42:373–396

    Article  Google Scholar 

  30. Heisel U, Zaloha VA, Kryvoruchko DV, Storchak M, Goloborodko L (2013) Modelling of orthogonal cutting processes with the method of smoothed particle hydrodynamics. Ann WGP Prod Eng 7(6):639–645

    Article  Google Scholar 

  31. Söhner J (2003) Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Element-Methode. Dissertation Universität, Karlsruhe, 148 S

  32. Britz R, Ulbrich H (2008) Lathe: modeling and coupling of process and structure. In: Proceedings of the 1st International Conference on PMI, Hannover, pp 231–238

  33. Kristof J (1939) Grundlagen der Zerspanung, Berichte über betriebswissenschaftliche Arbeit, VDI Verlag, Bd. 19

  34. Chakrabarty J (2006) Theory of plasticity, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  35. Zekhanov JuA (1993) Deform drawing mechanics as science foundation of estimate of part quality and tool workability with wear-resistant coating. Dissertation Dr. Sc. tech., Voronezh

  36. Rosenberg OA (1981) Mechanic of tool and workpiece interaction by deform drawing. Naukova Dumka, Kiev, p 288

    Google Scholar 

  37. Kusnezov VD (1977) Physik des Zerspanens und Reibung der Metalle und Kristalle. Wissenschaft, Moskau, 310 S

  38. Prandtl L (1920) Über die Härte plastischer Körper. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Berlin, pp 74–85

    Google Scholar 

  39. Hill R (1998) Mathematical theory of plasticity. Oxford Classic Texts in the Physical Sciences, Oxford University Press, USA

  40. Zorev NN, Granovskiy GI, Larin MN, u A (1967) Development of cutting metal science. Moscow, Machinery

  41. Zorev NN (1966) Metal Cutting Mechanics. Pergamon Press GmbH, Frankfurt am Main, p 526

    Google Scholar 

  42. Heisel U, Kushner V, Storchak M (2012) Effect of machining conditions on specific tangential forces. Ann WGP Product Eng 6(6):621–629

    Article  Google Scholar 

  43. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool Part I: new model and theory. J Mech Phys Solids 51:715–742

    Article  MATH  Google Scholar 

  44. Jakubov FJ, Kim VA, Jakubov ChF (2000) To theory of self-organization process by friction and wear. High Tech in Mechanical Engineering. Technical University, Kharkov, vol 1(3), p 320

  45. Heisel U, Storchak M, Eberhard P, Gaugele T (2011) Experimental studies for verification of thermal effects in cutting. Ann WGP Prod Eng 5(5):507–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Storchak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsekhanov, J., Storchak, M. Development of analytical model for orthogonal cutting. Prod. Eng. Res. Devel. 9, 247–255 (2015). https://doi.org/10.1007/s11740-014-0591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0591-6

Keywords

Navigation