Skip to main content
Log in

Chip formation and modeling of dynamic force behavior in machining polycrystalline iron–aluminum

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Intermetallic iron–aluminum (FeAl) has an excellent resistance against corrosion and abrasion, a low density as well as high specific strength compared to conventional steel. In addition, the raw materials and manufacturing costs of FeAl-alloys are relatively low. The machinability is challenging. Economical machining of FeAl-alloys is currently not possible because of high tool wear. The chip formation mechanisms in machining FeAl-alloys are currently unknown. This study focuses on the influence of the material grain size on the thermomechanical processes during chip formation. A simultaneous measuring system for the determination of process forces, temperatures and chip formation in planing and orthogonal turning is presented. The chip formation mechanisms change with the grain transition and grain size. Decreasing grain sizes lead to the higher ductility in material separation by favorable thermomechanical loads and reduced crack initiation. By using force data from monocrystalline machining a model is introduced, which predicts the force dynamics in machining of polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sykes C, Bampflyde JW (1935) The physical properties of iron–aluminum alloys. J Iron Steel Inst 130:389–418

    Google Scholar 

  2. McKamey CG, DeVan JH, Tortorelli PF, Sikka VK (1991) A review of recent developments in Fe3Al-based alloys. J Mater Res 6:1779–1805

    Article  Google Scholar 

  3. Pint BA, Leibowitz J, DeVan JH (1999) The effect of an oxide dispersion on the critical Al content in Fe–Al alloys. Oxid Met 51:181–197

    Article  Google Scholar 

  4. Morris DG (1997) Overview of iron–aluminide research in Europe: organization and examples. In: Deevi SC, Sikka VK, Maziasz PJ, Cahn RW (eds) International symposium on nickel and iron aluminide. ASM International, Materials Park, Ohio, pp 73–94

  5. Sikka VK (1997) Commercialization of nickel and iron aluminides. In: Deevi SC, Sikka VK, Maziasz PJ, Cahn RW (eds) International symposium on nickel and iron aluminides. ASM International, Materials Park, Ohio, pp 361–376

  6. Schlegl M, Schmitt S (2008) Exhaust gas turbo charger for internal combustion engine. Patent no. US20080163622 A1. DaimlerChrysler AG

  7. Hanus P, Bartsch E, Palm M, Krein R, Bauer-Partenheimer K, Janschek P (2010) Mechanical properties of a forged Fe–25Al–2Ta steam turbine blade. Intermetallics 18:1379–1384

    Article  Google Scholar 

  8. Liu CT, Kumar KS (1993) Ordered Intermetallic alloys, part 1: nickel and iron aluminides. JOM 45:38–44

    Article  Google Scholar 

  9. Skrotzki W, Tamm R, Kegler K, Oertel CG (2009) Deformation and recrystallization textures in iron aluminides. In: Halder A, Suwas S, Bhattacharjee D (eds) Microstructure and texture in steels. Springer, London, pp 379–391

    Chapter  Google Scholar 

  10. Morris DG, Munoz-Morris MA (2011) Recent developments toward the application of iron aluminides in fossil fuel technologies. Adv Eng Mater 13:43–47

    Article  Google Scholar 

  11. Kubaschewski O (1982) Iron—binary phase diagrams. Springer, Berlin

    Google Scholar 

  12. Kupka M (2002) Temperature dependence of the yield stress of an FeAl base alloy. Mater Sci Eng A 336:320–322

    Article  Google Scholar 

  13. Morris DG, Munoz-Morris MA (2005) The stress anomaly in FeAl–Fe3Al alloys. Intermetallics 13:1269–1274

    Article  Google Scholar 

  14. Palm M (2005) Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics 13:1286–1295

    Article  Google Scholar 

  15. Zhao P, Morris DG, Morris-Munoz MA (1999) Forging, textures, and deformation systems in a B2 FeAl alloy. J Mater Res 14:715–728

    Article  Google Scholar 

  16. Calonne O, Fraczkiewicz A, Louchet F (2000) Yield strength anomaly in B2-ordered FeAl alloys: role of boron. Scr Mater 43:69–75

    Article  Google Scholar 

  17. Pocci D, Tassa O, Testani C (1994) Production and properties of CSM FeAl intermetallic alloys. In: Symposium on processing, properties, and applications of iron aluminides. San Francisco, pp 19–30

  18. Woodyard JR (1992) Machining of Fe3Al intermetallics. Report of investigations, vol 9437. U.S. Department of the Interior, Bureau of Mines

  19. Chowdhuri S, Joshi SS, Rao PK, Ballal NB (2004) Machining aspects of a high carbon Fe3Al alloy. J Mater Process Technol 147:131–138

    Article  Google Scholar 

  20. Denkena B, Meyer R, Stiffel JH, Moral AI (2011) Machining of iron–aluminum alloys. In: 9th international conference on advanced manufacturing systems and technology. Mali Losinj, Croatia, pp 76–89

  21. Warnecke G (1973) Spanbildung bei metallischen Werkstoffen. Dissertation, Universität Hannover

  22. Pujana J, Arrazola PJ, Villar JA (2008) Inprocess high-speed photography applied to orthogonal turning. J Mater Process Technol 202:475–485

    Article  Google Scholar 

  23. Heigel JC, Ivester RW, Whitenton EP (2008) Cutting temperature measurements of segmented chips using dual-spectrum high-speed microvideography. Trans NAMRI/SME 36:73–80

    Google Scholar 

  24. Heigel JC, Whitenton EP (2009) High-speed microvideography observations of the periodic catastrophic shear event in cutting AISI 1045 steel. Trans NAMRI/SME 37:33–40

    Google Scholar 

  25. Hoppe S (2003) Experimental and numerical analysis of chip formation in metal cutting. Dissertation, Rheinisch-Westfaelische Technische Hochschule Aachen

  26. Childs THC (1971) A new visio-plasticity technique and a study of curly chip formation. Int J Mech Sci 13:373–387

    Article  Google Scholar 

  27. Denkena B, Köhler J, Moral A, Stiffel JH (2013) Spanende Bearbeitung von Eisen-Aluminiden. In: Sitzung Fachausschuss Intermetallische Phasen, Berlin

  28. Denkena B, Möhring HC, Hesse P (2007) Energy flow in jerk-decoupled translatory feed axes. Proc Inst Mech Eng C J Mech Eng Sci 221:89–98

    Article  Google Scholar 

  29. Ilschner B (2010) Werkstoffwissenschaften und Fertigungstechnik: Eigenschaften, Vorgänge, Technologien. Springer, Berlin

    Book  Google Scholar 

  30. Raouf BA (2003) Thermomechanische Wirkmechanismen und Spanbildung bei der Hochgeschwindigkeitszerspanung. Dissertation, Leibniz Universität Hannover

  31. Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z 94, 11/12:299–305

Download references

Acknowledgments

We thank the German Research Foundation (DFG) for their financial support within the project “Wirkmechanismen bei der Spanbildung der intermetallischen Legierung Fe3Al–Cr” (DE 447/79-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. Stiffel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denkena, B., Stiffel, JH., Hasselberg, E. et al. Chip formation and modeling of dynamic force behavior in machining polycrystalline iron–aluminum. Prod. Eng. Res. Devel. 8, 273–282 (2014). https://doi.org/10.1007/s11740-013-0520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0520-0

Keywords

Navigation