Skip to main content
Log in

Towards FE-simulation based production planning and development

  • Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

To remain competitive in times of unstable markets and shrinking sales, automotive manufacturers are under pressure to decrease the product development time. Especially, the time for planning of production steps and processes is strictly limited. The numerical simulation of production processes can help to get insight into the parts’ behavior and properties and to evaluate the feasibility of the production steps. In this paper the role and application of the welding simulation for the production planning is discussed. The computed welding distortion can be taken into account before the forming tools are constructed and the first sheet parts are produced. Hence, many problems occurring during the assembly of welded parts can be identified and avoided and the number of prototypes can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schenk M, Wirth S (2004) Fabrikplanung und Fabrikbetrieb. Springer, Berlin

    Google Scholar 

  2. Becker H (2006) High noon in the automotive industry. Springer, Berlin

    Google Scholar 

  3. Wagner B, Monk E (2009) Enterprise resource planning. Course Technology Cengage Learning, Boston

    Google Scholar 

  4. Blanchard D (2007) Supply chain management best practices. Wiley, New Jersey

    Google Scholar 

  5. Günther H-O, van Beek P (2003) Advanced planning and scheduling solutions in process industry. Springer, Berlin

    Google Scholar 

  6. Westkämper E (2009) Digitale Fabrik—Leitthema in der Produktionstechnik, wt Werkstattstechnik online, 99, p 91

  7. Ranky PG (2003) An introduction to digital factory and digital telematic car modeling with R & D and industrial case studies. CIMware USA Inc., New Jersey

    Google Scholar 

  8. Bär T, Haasis S (2003) Perspektiven für die simulation. In: Bayer J et al (eds) Simulation in der Automobilproduktion. Springer, Berlin

    Google Scholar 

  9. Radaj D (1999) Welding residual stresses and distortion: calculation and measurement. DVS-Verlag, Düsseldorf

    Google Scholar 

  10. Cerjak H, Bhadeshia H, Kozeschnik E (eds) (2007) Mathematical modelling of weld phenomena, band 8. Verlag der Technischen Universität Graz, Graz

  11. Michaleris P, DeBiccari A (1997) Prediction of welding distortion. Weld J 76:172–181

    Google Scholar 

  12. Zäh M, Papadakis L (2008) Simulation of welding distortions of frame assemblies by means of models based on finite element analysis. In: Proceedings of 21st meeting on mathematical modeling of material processing with lasers CD-ROM, Igls

  13. Lee H-B, Bang Y-S, Duval J-L, Han J-H (2002) A study on the distortion characteristic due to spot welding of body structure assembly for passenger car. In: Proceedings international body engineering conference IBEC 2002 CD-ROM, Paris

  14. van der Aa E, Hermans MJM, Richardson IM (2007) Control of welding residual stress and distortion by the addition of a trailing heat sink. In: Mathematical modelling of weld phenomena, band 8. Verlag der Technischen Universität Graz, pp 1053–1072

  15. Schwenk C, Rethmeier M, Dilger K, Michailov V (2007) Sensitivity analysis of welding simulation depending on material properties value variation. In: Mathematical modelling of weld phenomena, band 8. Verlag der Technischen Universität Graz, pp 1107–1128

  16. Tikhomirov D, Rietman B, Kose K, Makkink M (2005) Computing of welding distortion: comparison of different industrially applicable methods. Adv Mat Res 6–8:195–202

    Article  Google Scholar 

  17. Lerebourg V (2002) Gas metal arc welding and welding simulation of aluminium alloyed test parts. In: EUROPAM 2002 conference proceedings CD-ROM, Antibes

  18. Ossenbrink R, Michailov V, Wohlfahrt H (2004) Numerical simulation of welding stresses and distortions under consideration of temporal and local changes of strain rate. J Phys 4:169–175

    Google Scholar 

  19. Schenk T, Richardson IM, Kraska M, Ohnimus O (2009) A non-isothermal thermomechanical-metallurgical model and its application to welding simulations. Sci Technol Join Weld 14:152–160

    Article  Google Scholar 

  20. Lindgren L-E (2001) Finite element modeling and simulation of welding. Part 2: improved material modeling. J Therm Stress 24:195–231

    Article  Google Scholar 

  21. Dilthey U, Reisgen U, Kretschmer M (2000) Comparison of FEM simulations to measurements of residual stresses for the example of a welded plate: a state-of-the-art report. Model Simul Mater Sci Eng 8:911–926

    Article  Google Scholar 

  22. Pilipenko A (2001) Computer simulation of residual stress and distortion of thick plates in multi-electrode submerged welding. Their mitigation techniques. PhD thesis, Norwegian University of Science and Technology, Trondheim

  23. Schwenk C, Rethmeier M, Weiss D (2007) Rapid generation of temperature fields for simulation of welding induced distortion. In: Mathematical modelling of weld phenomena, band 8. Verlag der Technischen Universität Graz, pp 835–846

  24. Deng D, Murakawa H, Liang W (2007) Numerical simulation of welding distortion in large structures. Comput Methods Appl Mech Eng 196:4613–4627

    Article  MATH  Google Scholar 

  25. Faure F, Bergheau J-M, Leblond J-B, Souloumiac B (2005) Prediction of distortions of large thin structures during welding using shell elements and multiscale approaches. In: Cerjak H et al (eds) Mathematical modeling of weld phenomena, band 7. Verlag der Technischen Universität Graz, Graz

  26. Hackmair C, Werner E, Pönisch M (2003) Application of welding simulation for chassis components within the development of manufacturing methods. Comput Mater Sci 28:540–547

    Article  Google Scholar 

  27. Birk-Sørensen M (1999) Simulation of welding distortions in ship section. PhD thesis, Technical University of Denmark

  28. Pasquale P (2002) Numerical welding simulation on aluminium body and door structures. In: Proceedings EUROPAM 2002 conference CD-ROM, antibes

  29. Reinhart G, Lenz B, Rick F (2000) Planning laser welding of car body structures by means of finite element simulation. In: Teti R (ed) Intelligent computation in manufacturing engineering, proceedings 2. CIRP seminar capri, pp 197–201

  30. Tikhomirov D, Schmidt L, Weiher J (2008) Fast welding distortion evaluation for the production planning. In: Proceedings EUROPAM 2008 conference CD-ROM, Prague

  31. Zäh M, Roeren S (2005) One modified FE-model to simulate the process chain of forming and welding. Steel Res Int 2/3:235–239

    Google Scholar 

  32. Rietman B, Kose K (2004) Combining forming results via weld models to powerful numerical assemblies. In: Proceedings ESAFORM 2004 conference CD-ROM, Trondheim

  33. AiF-Project IGF-Nr. 15.724N (2008) Optimierte Berücksichtigung vorgelagerter Umformprozesse in der Schweißsimulation am Beispiel von Tiefziehbauteilen, SLV München

  34. AiF-Project IGF-Nr. ZN 09545/09 (2009) Kopplung von Prozess-, Gefüge- und Struktursimulation zur Beurteilung der quasi-statischen Festigkeit laserstrahlgeschweißter Hybrid-Verbindungen, BIAS/IWT/ZeTeM Bremen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tikhomirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhomirov, D., Eßer, G. & Scholz, HW. Towards FE-simulation based production planning and development. Prod. Eng. Res. Devel. 4, 185–191 (2010). https://doi.org/10.1007/s11740-010-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-010-0217-6

Keywords

Navigation