Skip to main content
Log in

Glyph based representation of principal stress tensors in virtual reality environments

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This article describes a new visualization method for an illustrative visualization of physical values in immersive workspaces. Through the newly developed visualization pipeline, FEM results such as stress, temperature and resulting deformation, as well as the underlying constraints can be visualized in virtual and augmented reality (AR) applications. Special features are the use of 3D glyphs for mapping stress direction and gradient as well as data preparation and the resulting data format, which was especially developed for use with virtual reality (VR) systems. This article demonstrates the current state of VR developments, which were done at the Institute for Machine Tools and Production Processes, for improving the analysis of complex FE datasets, and gives an outlook to future research activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neugebauer R, Weidlich D, Kolbig S, Polzin T (2005) VR-unterstützte Entwicklung von Werkzeugmaschinen. ZWF 100/1–2:59–65

    Google Scholar 

  2. Neugebauer R, Weidlich D, Polzin T (2005) VRAx- Entwerfen von technologieoptimierten Produkten durch Synthese von Virtual Reality und Cax. Indus Manage 2:19–22

    Google Scholar 

  3. Weidlich D, Benölken P, Riegel J, Scherer S (2006) Intuitive Konfiguration von Werkzeugmaschinen in der Virtuellen Realität, Proc. 17. Konferenz Simulation und Visualisierung. Otto-von-Guericke Universität, Magdeburg, pp 231–243

    Google Scholar 

  4. Delmarcelle T, Hesselink L (1993) Visualizing second-order tensor fields with hyperstreamlines. IEEE Comput Graphics Appl 13/4:25–33

    Article  Google Scholar 

  5. Benölken P (2005) Effiziente Visualisierungs- und Interaktionsmethoden zur Analyse numerischer Simulationen in virtuellen und erweiterten Realitäten, Diss. Darmstadt, TU

    Google Scholar 

  6. Cerfontaine CA, Kuhlen T, Müller-Held B (2005) Interaktive, VR-gestützte Finite-Elemente-Datenanalyse von Werkzeugmaschinen, Vortrag, Proc. 4. Paderborner Workshop AR & VR in der Produktentstehung, 9.–10. Heinz Nixdorf Institut, Universität Paderborn, Juni

    Google Scholar 

  7. Ryken MJ, Vance JM (2000) Applying virtual reality techniques to the interactive stress analysis of a tractor lift arm. Finite Elem Anal Des 35/2:141–155

    Article  Google Scholar 

  8. http://www.visenso.de

  9. Frederick D, Chang TS (1972) Continuum mechanics. Scientific Publishers, Boston, pp 38–40

    Google Scholar 

  10. Haber R (1990) Visualization techniques for engineering mechanics. Comput Syst Eng 1/1:37–50

    Article  Google Scholar 

  11. Moore JG, Schorn SA, Moore J (1996) Methods of classical mechanics applied to turbulence stresses in a tip leakage vortex. J Turbomach 118/4:622–629

    Article  Google Scholar 

  12. Hashash YMA, Yao JI, Wotring DC (2003) Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response. Int J Numer Anal Meth Geomechan 27:603–626

    Article  MATH  Google Scholar 

  13. Kindlmann GL (2004) Superquadric tensor glyphs. IEEE/Eurographics symposium on visualization (VisSym), pp 147–154

  14. Masek B, Jirka T, Stankova H, Dalikova K, Mahn U, Skala V (2004) Using a non-standard visualization method for analysis of rotating bending tests. In: 8th International research/expert conference “Trends in the development of machinery and associated technology” TMT, 15–19 September Neum, Bosnia Herzegovina, pp 499–502

  15. Kreißig R, Benedix U (2002) Höhere technische Mechanik, Lehr- und Übungsbuch. 1st edn. Springer, Wien

    MATH  Google Scholar 

  16. Schmalstieg D, Fuhrmann A, Gervautz M, Szalavari Z (1998) StudierStube: an environment for collaboration in augmented reality. Virt Real Syst Dev Appl 3/1:37–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Neugebauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neugebauer, R., Weidlich, D., Scherer, S. et al. Glyph based representation of principal stress tensors in virtual reality environments. Prod. Eng. Res. Devel. 2, 179–183 (2008). https://doi.org/10.1007/s11740-008-0095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0095-3

Keywords

Navigation