Skip to main content
Log in

Fundamental study of surface densification of PM gears by rolling using FE analysis

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The complex shape of gears is very attractive to the near-net-shape PM technology. The strength of conventional PM parts is reduced by the residual porosity due to the power law relationship between the density and the mechanical properties. The maximum stresses in gears are found in the tooth root and the flank near or directly at the surface, so that by a local densification of the near surface layer the maximum load carrying capacity of the complete gear can be increased. This surface densification can be achieved by a rolling process. Due to the own elastic-plastic behavior of PM materials and due to the continuous change of the contact conditions during rolling, the process is too complex to be described analytically. To gain a better understanding of the process, the numerical simulation is a capable method. In this paper an FEA model is prepared and verified based on an experimental investigation. Additionally, case studies were carried out in order to analyze the relationship between the process parameters and the densification result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beiss P (2003) Iron and steel: manufacturing route, chap 5, structural mass production. In: Landolt-Börnstein—Group VIII Advanced Materials and Technologies, pp 5–20

  2. Hanejko F, Rawlings A, Narasimhan KSV (2005) Surface densified P/M steel—comparison with wrought steel grades. Euro PM2005, Prague, pp 509–511

  3. Petersen J (2004) Wälzfestigkeitsuntersuchung von Sinterstählen und Neuentwicklung eines Wälzfestigkeitsprüfstands. Dissertation RWTH, Aachen University

  4. Kotthoff G (2003) Neue Verfahren zur Tragfähigkeitssteigerung von gesinterten Zahnrädern. Dissertation RWTH, Aachen University

  5. Nigarura S, Trasorras JRL (2001) Rolling contact fatigue properties of DensiFormed™ sintered alloys advances in powder metallurgy and particulate materials. MPIF/APMI, Princeton, pp 155–168

    Google Scholar 

  6. Lipp K, Sonsino CM (2000) Hochfeste Sinterstähle—Einsatz hochfester umweltfreundlicher Sinterstähle für hochbelastbare Bauteile. Forschungskuratorium für Maschinenbau (FKM), Frankfurt/Main

  7. Nigarura S, Blanchard P, Trasorras JRL (2001) Processing effects on rolling contact fatigue properties of sintered and DensiForme™ ferrous alloy. MPIF/APMI, Princeton, pp 16–35

  8. Lawcock R, Buckley-Golder K, Sarafinchan D (1999) Testing of high endurance PM steels, for automotive transmission gearing components. In: Society of Automotive Engineers Paper 1999-01-0293

  9. Jones PK, Buckley-Golder K, Lawcock R, Shivanath R (1997) Densification strategies for high endurance P/M components. Int J Powder Metallurgy 33(3):37–44

    Google Scholar 

  10. Strehl R (1997) Tragfähigkeit von Zahnrädern aus hochfesten Sinterstählen. Dissertation RWTH, Aachen University

  11. Chidester AJ, Green WB, Corbo K (1993) High-Hardness, High-Density Powder Metal Bearing Applications. ASTM, Philadelphia

    Google Scholar 

  12. Cadle TM, Landgraf CJ, Brewin P, Nurthen P (1991) Rolling contact of P/M steel—effects of sintering temperature and material density advances in powder metallurgy and particulate materials. MPIF/APMI, Princeton, pp 175–182

    Google Scholar 

  13. Trasorras JRL, Nigarura S, Sigl LS (2006) DensiForm® technology for wrought-steel-like performance of powder metal components. In: Society of Automotive Engineers Paper 2006-01-0398

  14. Forden L, Bengtsson S, Bergström M (2005) Comparison of high performance PM gears manufactured by conventional and warm compaction and surface densification. Powder Metallurgy 48(1):10–12

    Google Scholar 

  15. Sandner C, Ratzi R, Lorenz B, Tobie T (2002) Sintered gears—achievable load-carrying capacities by conventional and new production methods. In: International conference on gears, Munich, pp 295–310

  16. Höganäs AB (1998) Eisen- und Stahlpulver für Sinterformteile. Firmenschrift der Höganäs AB, Höganäs

  17. Trasorras JRL, Riley ET (2006) US007025929B2: Method and apparatus for densifying powder metal gears

  18. Woolf RM (2005) US006899846B2: Method of producing surface densified metal articles

  19. Woolf R (2003) US006517772B1: Apparatus and method for forming powder metal gears

  20. Woolf RM, Trasorras JRL (2000) US006151941A: Apparatus and method for roll forming gears

  21. Shivanath R, Peter J (1998) US005729822A: Gear

  22. Cole CJ, Shivanath R, Jones P (1998) US005711187A: Gear wheels rolled from powder metal blanks and method of manufacture

  23. Hertz H (1895) Über die Berührung elastischer Körper, Leipzig

  24. Altena H, Danninger H (2005) Wärmebehandlung von Sinterstahl-Präzisionsteilen, Part 2: Prozess und Anlagentechnik. BHM Berg- und Hüttenmännische Monatshefte 150(5):170–175

    Google Scholar 

  25. Danninger H, Altena H (2005) Wärmebehandlung von Sinterstahl-Präzisionsteilen, Part 1: Basic considerations. BHM Berg- und Hüttenmännische Monatshefte 150(3):77–81

    Google Scholar 

  26. Bassan D, Asit A, Pidria MF, Zingale P (2005) PM surface densification technology: a numerical-experimental methodology for rolling tool design. Euro PM2005, Prague, pp 217–224

  27. Bassan D (2004) Asti M, Pidria M, Zingale, P.: A new simulation methodology for PM surface densification process. Euro PM2004, Vienna

  28. Engström A (2003) FEM simulations of gear surface densification. Mini Thesis, Swedish Institute for Metals Research

  29. Kuhn HA, Downey CL (1971) Deformation characteristics and plasticity theory of sintered powder materials. Int J Powder Metallurgy 7(1):15–25

    Google Scholar 

  30. Weichert D (1999) Mechanik II für Ingenieure : Festigkeitslehre. RWTH, Aachen University, Aachen

  31. Doraivelu SM, Gegel HL, Gunasekera JS, Malas JC, Morgan JT (1984) A new yield function for compressible P/M materials. Int J Mech Sci 26:527

    Article  Google Scholar 

  32. Shima S, Oyane M (1976) Plasticity theory for porous materials. Int J Mech Sci 18:285

    Article  Google Scholar 

  33. Kauffmann P (2005) Numerische Simulation des Oberflächenverdichtens von gesinterten Zahnrädern durch Querwalzen. Mini Thesis, Laboratory of Machine Tools and Production Engineering, RWTH, Aachen University

  34. Gurson AL (1975) Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. Dissertation, Brown University

  35. Ponte Castañeda P, Zaidman M (1994) Constitutive models for porous materials with evolving microstructure. J Mech Phys Solids 42:1459–1497

    Article  MATH  MathSciNet  Google Scholar 

  36. Gologanu M, Leblond JB (1993) Approximate models for ductile metals containing non-spherical voids - case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kauffmann.

Additional information

The investigations described in this present paper were sponsored by the WZL Gear Research-Circle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klocke, F., Schröder, T. & Kauffmann, P. Fundamental study of surface densification of PM gears by rolling using FE analysis. Prod. Eng. Res. Devel. 1, 113–120 (2007). https://doi.org/10.1007/s11740-007-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-007-0006-z

Keywords

Navigation