Skip to main content

Advertisement

Log in

Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Kynurenine pathway, the quantitatively main branch of tryptophan metabolism, has been long been considered a source of nicotinamide adenine dinucleotide, although several of its products, the so-called kynurenines, are endowed with the capacity to activate glutamate receptors, thus potentially influencing a large group of functions in the central nervous system (CNS). Migraine, a largely unknown pathology, is strictly related to the glutamate system in the CNS pathologic terms. Despite the large number of studies conducted on migraine etio-pathology, the kynurenine pathway has been only recently linked to this disease. Nonetheless, some evidence suggests an intriguing role for some kynurenines, and an exploratory study on the serum kynurenine level might be helpful to better understand possible alterations of the kynurenine pathway in patients suffering from migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wirleitner B, Neurauter G, Schröcksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10:1581–1591

    Article  CAS  PubMed  Google Scholar 

  2. Bender DA (1983) Biochemistry of tryptophan in health and disease. Mol Aspects Med 6:101–197

    Article  CAS  PubMed  Google Scholar 

  3. Magis D, Schoenen J (2011) Treatment of migraine: update on new therapies. Curr Opin Neurol 24(3):203–210

    Article  CAS  PubMed  Google Scholar 

  4. Pytliak M, Vargová V, Mechírová V, Felšöci M (2011) Serotonin receptors—from molecular biology to clinical applications. Physiol Res 60(1):15–25

    CAS  PubMed  Google Scholar 

  5. Tfelt-Hansen PC, Pihl T, Hougaard A, Mitsikostas DD (2014) Drugs targeting 5-hydroxytryptamine receptors in acute treatments of migraine attacks. A review of new drugs and new administration forms of established drugs. Expert Opin Investig Drugs 23:375–385

    Article  CAS  PubMed  Google Scholar 

  6. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Miller CL, Llenos IC, Cwik M, Walkup J, Weis S (2008) Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder. Neurochem Int 52:1297–1303

    Article  CAS  PubMed  Google Scholar 

  8. Schwarcz MJ, Guillemin GJ, Teipel SJ, Buerger K, Hampel H (2013) Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263:345–352

    Article  Google Scholar 

  9. Párdutz A, Fejes A, Bohár Z, Tar L, Toldi J, Vécsei L (2012) Kynurenines and headache. J Neural Transm 119:285–296

    Article  PubMed  Google Scholar 

  10. Dahlem MA (2013) Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos 23(4):046101

    Article  PubMed  Google Scholar 

  11. Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154(Suppl 1):S44–S53

    Article  CAS  PubMed  Google Scholar 

  12. Eikermann-Haerter K, Negro A, Ayata C (2012) Spreading depression and the clinical correlates of migraine. Rev Neurosci 24:353–363

    Google Scholar 

  13. Vikelis M, Mitsikostas DD (2007) The role of glutamate and its receptors in migraine. CNS Neurol Disord: Drug Targets 6:251–257

    Article  CAS  Google Scholar 

  14. Takikawa O (2005) Biochemical and medical aspects of indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem Biophys Res Commun 338:12–19

    Article  CAS  PubMed  Google Scholar 

  15. Fazio F, Lionetto L, Molinaro G, Bertrand HO, Acherì F, Ngomba RT, Notartomaso S, Curini M, Rosati O, Scarselli P, Di Marco R, Battaglia G, Bruno V, Simmaco M, Pin JP, Nicoletti F, Goudet C (2012) Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol Pharmacol 81:643–656

    Article  CAS  PubMed  Google Scholar 

  16. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    Article  CAS  PubMed  Google Scholar 

  17. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  CAS  PubMed  Google Scholar 

  18. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627

    Article  CAS  PubMed  Google Scholar 

  19. Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119:133–139

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee J, Alkondon M, Albuquerque EX (2012) Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidal neurons via α7 nAChR-dependent and -independent mechanisms. Biochem Pharmacol 84:1078–1087

    Article  CAS  PubMed  Google Scholar 

  21. Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO Jr, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169

    Article  CAS  PubMed  Google Scholar 

  22. Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21:149–154

    Article  CAS  PubMed  Google Scholar 

  23. Eastman CL, Guilarte TR (1990) The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 15:1101–1107

    Article  CAS  PubMed  Google Scholar 

  24. Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11:3857–3863

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39:7266–7275

    Article  CAS  PubMed  Google Scholar 

  26. Gobaille S, Kemmel V, Brumaru D, Dugave C, Aunis D, Maitre M (2008) Xanthurenic acid distribution, transport, accumulation and release in the rat brain. J Neurochem 105:982–993

    Article  CAS  PubMed  Google Scholar 

  27. Copeland CS, Neale SA, Salt TE (2013) Actions of xanthurenic acid, a putative endogenous group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Neuropharmacology 66:133–142

    Article  CAS  PubMed  Google Scholar 

  28. Stovner L, Hagen K, Jensen R, Katsarava Z, Lipton R, Scher A, Steiner T, Zwart JA (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27:193–210

    Article  PubMed  Google Scholar 

  29. Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 14:62

    Article  PubMed Central  PubMed  Google Scholar 

  30. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982

    CAS  PubMed  Google Scholar 

  31. Bohár Z, Fejes-Szabó A, Tar L, Varga H, Tajti J, Párdutz Á, Vécsei L (2013) Evaluation of c-Fos immunoreactivity in the rat brainstem nuclei relevant in migraine pathogenesis after electrical stimulation of the trigeminal ganglion. Neurol Sci. 34:1597–1604

    Article  PubMed  Google Scholar 

  32. Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9:637–644

    Article  PubMed  Google Scholar 

  33. Cananzi AR, D’Andrea G, Perini F, Zamberlan F, Welch KM (1995) Platelet and plasma levels of glutamate and glutamine in migraine with and without aura. Cephalalgia 15:132–135

    Article  CAS  PubMed  Google Scholar 

  34. Shimada A, Cairns BE, Vad N, Ulriksen K, Pedersen AM, Svensson P, Baad-Hansen L (2013) Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). J Headache Pain 14:2

    Article  PubMed Central  PubMed  Google Scholar 

  35. Filipović B, Matak I, Lacković Z (2014) Dural neurogenic inflammation induced by neuropathic pain is specific to cranial region. J Neural Transm 121:555–563

    Article  PubMed  Google Scholar 

  36. Diener HC (2014) CGRP as a new target in prevention and treatment of migraine. Lancet Neurol 13:1065–1067

    Article  CAS  PubMed  Google Scholar 

  37. Laursen JC, Cairns BE, Dong XD, Kumar U, Somvanshi RK, Arendt-Nielsen L, Gazerani P (2014) Glutamate dysregulation in the trigeminal ganglion: a novel mechanism for peripheral sensitization of the craniofacial region. Neuroscience 256:23–35

    Article  CAS  PubMed  Google Scholar 

  38. Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46(Suppl 1):S39–S44

    Article  PubMed  Google Scholar 

  39. Mitsikostas DD, del Sanchez RM, Waeber C, Huang Z, Cutrer FM, Moskowitz MA (1999) Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br J Pharmacol 127:623–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  CAS  PubMed  Google Scholar 

  41. Tajti J, Szok D, Párdutz Á, Tuka B, Csáti A, Kuris A, Toldi J, Vécsei L (2012) Where does a migraine attack originate? In the brainstem. J Neural Transm 119(5):557–568

    Article  CAS  PubMed  Google Scholar 

  42. Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660

    Article  CAS  PubMed  Google Scholar 

  43. Welch KM, Nagesh V, Aurora SK, Gelman N (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41:629–637

    Article  CAS  PubMed  Google Scholar 

  44. Renno WM, Alkhalaf M, Mousa A, Kanaan RA (2008) A comparative study of excitatory and inhibitory amino acids in three different brainstem nuclei. Neurochem Res 33(1):150–159

    Article  CAS  PubMed  Google Scholar 

  45. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142

    Article  CAS  PubMed  Google Scholar 

  46. Ayata C, Moskowitz MA (2006) Cortical spreading depression confounds concentration-dependent pial arteriolar dilation during N-methyl-d-aspartate superfusion. Am J Physiol Heart Circ Physiol 290:H1837–H1841

    Article  CAS  PubMed  Google Scholar 

  47. Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 23(14):62

    Article  Google Scholar 

  48. Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82

    Article  PubMed  Google Scholar 

  49. Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpé S, Steinbusch HW, Leonard BE, Kim YK (2011) Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naïve and medication-free schizophrenic patients. Brain Behav Immun 25:1576–1581

    Article  CAS  PubMed  Google Scholar 

  50. Martelletti P, Stirparo G, Morrone S, Rinaldi C, Giacovazzo M (1997) Inhibition of intercellular adhesion molecule-1 (ICAM-1), soluble ICAM-1 and interleukin-4 by nitric oxide expression in migraine patients. J Mol Med (Berl) 75:448–453

    Article  CAS  Google Scholar 

  51. Munno I, Marinaro M, Bassi A, Cassiano MA, Causarano V, Centonze V (2001) Immunological aspects in migraine: increase of IL-10 plasma levels during attack. Headache 41:764–767

    Article  CAS  PubMed  Google Scholar 

  52. Drummond PD (2006) Tryptophan depletion increases nausea, headache and photophobia in migraine sufferers. Cephalalgia 26:1225–1233

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16:279–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res 2:1–19

    PubMed Central  PubMed  Google Scholar 

  55. Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85:1027–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111

    Article  CAS  PubMed  Google Scholar 

  57. Oláh G, Herédi J, Menyhárt A, Czinege Z, Nagy D, Fuzik J, Kocsis K, Knapp L, Krucsó E, Gellért L, Kis Z, Farkas T, Fülöp F, Párdutz A, Tajti J, Vécsei L, Toldi J (2013) Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability. Drug Des Devel Ther 16(7):981–987

    Google Scholar 

  58. Kiss C, Shepard PD, Bari F, Schwarcz R (2004) Cortical spreading depression augments kynurenate levels and reduces malonate toxicity in the rat cortex. Brain Res 1002:129–135

    Article  CAS  PubMed  Google Scholar 

  59. Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S (2012) Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol 236:207–214

    Article  CAS  PubMed  Google Scholar 

  60. Knyihár-Csillik E, Toldi J, Mihály A, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114:417–421

    Article  PubMed  Google Scholar 

  61. Vámos E, Párdutz A, Varga H, Bohár Z, Tajti J, Fülöp F, Toldi J, Vécsei L (2009) l-Kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429

    Article  PubMed  Google Scholar 

  62. Vámos E, Fejes A, Koch J, Tajti J, Fülöp F, Toldi J, Párdutz A, Vécsei L (2010) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache 50:834–843

    Article  PubMed  Google Scholar 

  63. Zhang YQ, Ji GC, Wu GC, Zhao ZQ (2003) Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res 966:300–307

    Article  CAS  PubMed  Google Scholar 

  64. Mecs L, Tuboly G, Nagy E, Benedek G, Horvath G (2009) The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model. Anesth Analg 109:1297–1304

    Article  CAS  PubMed  Google Scholar 

  65. Knyihár-Csillik E, Chadaide Z, Okuno E, Krisztin-Péva B, Toldi J, Varga C, Molnár A, Csillik B, Vécsei L (2004) Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol 186:242–247

    Article  PubMed  Google Scholar 

  66. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    Article  CAS  PubMed  Google Scholar 

  67. Fejes-Szabó A, Bohár Z, Vámos E, Nagy-Grócz G, Tar L, Veres G, Zádori D, Szentirmai M, Tajti J, Szatmári I, Fülöp F, Toldi J, Párdutz Á, Vécsei L (2014) Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J Neural Transm 121:725–738

    Article  PubMed  Google Scholar 

  68. Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortiz-Islas E, López T, García E, Pineda B, Torres-Ramos M, Santamaría A, La Cruz VP (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33:538–547

    Article  PubMed  Google Scholar 

  69. Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120:190–198

    Article  CAS  PubMed  Google Scholar 

  70. Gupta R, Pathak R, Bhatia MS, Banerjee BD (2009) Comparison of oxidative stress among migraineurs, tension-type headache subjects, and a control group. Ann Indian Acad Neurol 12:167–172

    Article  PubMed Central  PubMed  Google Scholar 

  71. Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V (2007) The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 27:8297–8308

    Article  CAS  PubMed  Google Scholar 

  72. Fejes A, Párdutz A, Toldi J, Vécsei L (2011) Kynurenine metabolites and migraine: experimental studies and therapeutic perspectives. Curr Neuropharmacol 9:376–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  CAS  PubMed  Google Scholar 

  74. Lowe MM, Mold JE, Kanwar B, Huang Y, Louie A, Pollastri MP, Wang C, Patel G, Franks DG, Schlezinger J, Sherr DH, Silverstone AE, Hahn ME, McCune JM (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS ONE 9:e87877

    Article  PubMed Central  PubMed  Google Scholar 

  75. Fazio F, Zappulla C, Notartomaso S, Busceti C, Bessede A, Scarselli P, Vacca C, Gargaro M, Volpi C, Allegrucci M, Lionetto L, Simmaco M, Belladonna ML, Nicoletti F, Fallarino F (2014) Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology 81:237–243

    Article  CAS  PubMed  Google Scholar 

  76. Lapin IP (1978) Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J Neural Transm 42:37–43

    Article  CAS  PubMed  Google Scholar 

  77. Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  CAS  PubMed  Google Scholar 

  78. Obrenovitch TP, Urenjak J (2003) Accumulation of quinolinic acid with neuroinflammation: does it mean excitotoxicity? Adv Exp Med Biol 527:147–154

    Article  CAS  PubMed  Google Scholar 

  79. Gentile G, Chiossi L, Lionetto L, Martelletti P, Borro M (2014) Pharmacogenetic insights into migraine treatment in children. Pharmacogenomics 15:1539–1550

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Lionetto.

Additional information

M. Curto and L. Lionetto equally contributed to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curto, M., Lionetto, L., Fazio, F. et al. Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important. Intern Emerg Med 10, 413–421 (2015). https://doi.org/10.1007/s11739-015-1208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-015-1208-6

Keywords

Navigation