Skip to main content
Log in

Transport of photoassimilates in plants under unfavourable environmental conditions

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Transport of photoassimilates linking functionally plant, as a whole system, is discussed as a target for different environmental stresses. Anatomical, physiological and biochemical aspects of phloem transport, phloem loading and unloading are taken into consideration. In the light of modern theoríes of assimilate transport some historical hypotheses are also shown, due to their input into the progress of transport science.

The role of phloem unloading in plant acclimation to environment stress is not clear, however changes in source/sink ratio was often observed as the effect of stress. The blockage of sieve tubes found as the result of given stress may be of secondary importance. On the other hand, phloem loading process seems to be an important target for different environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni B, Daie J, Wyse RE. 1986. Enhancement of [14C]sucrose from source leaves of Vicia faba by gibberellic acid. Plant Physiol. 82: 962–6.

    PubMed  CAS  Google Scholar 

  • Aikman D.P., Anderson W.P. 1971. A quantitative investigation of a peristaltic model for model translocation. Ann. Bot. 35:761–22.

    Google Scholar 

  • Ameziane R., Limani M.A., Noctor G., Morot-Gaudry J.-F. 1995. Effect of nitrate concentration during growth on carbon partitioning and sink strength in chicory. J. Exp. Bot. 46: 1423–1428.

    CAS  Google Scholar 

  • Anderson W.P. 1973. The mechanisms of phloem translocation. In: “Transport at the cellular level”, Eds. M.A. Sleigh, D.H. Jenings, Symp. Soc.Exp. Biol. No. 28.

  • Angelov M.N., Sung S.-J.S, Doong R.L., Harms W.R., Kormanik P.P., Black C.C. Jr. 1996. Long- and short-term flooding effects on survival and sink-source relationships of swamp-adapted tree species. Tree Physiol. 16: 477–484.

    PubMed  Google Scholar 

  • Basshman D.C., Raikhel N.V. 1996. Transport proteins in the plasma membrane and the secretory system. Trends in plant science. 1:15–20.

    Article  Google Scholar 

  • Behnke H.-D. 1995. Sieve-element characters of the Proteaceae and Elaeagnaceae: nuclear crystals, phloem proteins and sieve-element plastids. Bot. Acta 108: 467–538.

    Google Scholar 

  • Blakeley S.D., Dennis D.T. 1993. Molecular approaches to the manipulation of carbon allocation in plants. Can. J. Bot. 71:765–778.

    CAS  Google Scholar 

  • Boote K.J., Pickering N.B. 1993. Modeling photosynthesis of row crop canopies. Hort Sci. 29: 1423–1434.

    Google Scholar 

  • Botha C.E.J 1992. Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern. Africa. Planta. 187:348–358.

    CAS  Google Scholar 

  • Botha C.E.J., van Bel A.J.E. 1992. Quantification of symplastic continuity as visualised by plasmodesmograms: diagnostic value for phloem-loading pathways. Planta. 187:359–366.

    Google Scholar 

  • Botha C.E.J., Cross R.H.M. 1997. Plasmodesmatal frequency in relation to short-distance transport and phloem loading in leaves of barley (Hordeum vulgare). Phloem is not loaded directly from the symplast. Physiol. Planta. 99: 355–362.

    Article  CAS  Google Scholar 

  • Bourquin S., Bonnemain J.-L., Delrot S. 1990. Inhibition of loading of 14C assimilates by p-chloromercuribenzene-sulfonic acid. Plant Physiol. 92: 97–102.

    PubMed  CAS  Google Scholar 

  • Bush D.R. 1993. Proton-coupled sugar and amino acid transporters in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 513–542.

    Article  CAS  Google Scholar 

  • Cakmak I., Hegeler Ch., Marschner H. 1994. Partitioning of shoot and root dry matter and carbohydrates in bean suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 45: 1245–1250.

    Article  CAS  Google Scholar 

  • Cakmak I., Hengeler Ch., Marschner H. 1994. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium, magnesium deficiency in bean plants. J. Exp. Bot. 45: 1251–1257.

    Article  CAS  Google Scholar 

  • Ciereszko I., Gniazdowska A., Mikulska M., Rychter A.M. 1996. Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant. Physiol. 149: 343–348.

    CAS  Google Scholar 

  • Cote R., Thompson R.G., Grodziński B. 1992. Phothosynthetic oxygen production facilitates translocation of C-labelled photoassimilates from tendrils and leaflets of Pisum sativum L. J. Exp. Bot. 43: 819–829.

    Article  CAS  Google Scholar 

  • Cronshaw J. 1981. Phloem structure and function. Ann. Rev. Plant Physiol. 32:465–84

    Article  CAS  Google Scholar 

  • Dannenhoffer J.M., Schulz A., Skaggs M.I., Bostwick D.E., Thompson G.A. 1997. Expresion of the phloem lecitin is developmentally linked to vascular differentiation in cucurbits. Planta. 201: 405–414.

    Article  CAS  Google Scholar 

  • DeJong T.M., Grossman Y.L. 1994. A supply and demand approach to modelling annual reproductive and vegetative growth of decidous fruit trees. Hort Sci. 29: 1435–1442.

    Google Scholar 

  • Delucia E.H., Sasek T.W., Strain B.R. 1985. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth. Res. 7: 175–184.

    Article  CAS  Google Scholar 

  • Dinar M., Rudich J., Zamski E. 1983. Effects of heat stress on carbon transport from tomato leaves. Ann. Bot. 51: 97–103

    CAS  Google Scholar 

  • Du Y.Ch., Tachibana S. 1994. Photosinthesis, photosynthate translocation and metabolism in cucumber roots held at supraoptimal temperature. J. Japan. Soc. Hort. Sci. 63: 401–408.

    CAS  Google Scholar 

  • Ehret D.L., Jolliffe P.A. 1985. Photosynthetic carbon dioxide exchange of bean plants grown at elevated carbon dioxide concentrations. Can. J. Bot. 63: 2026–2030.

    CAS  Google Scholar 

  • Engels C. 1994. Effect of root and shoot meristem temperature on shoot to root dry matter partitioning and the internal concentrations of nitrogen and carbohydrates in maize and wheat. Ann. Bot. 73: 211–219.

    Article  CAS  Google Scholar 

  • Evert R.F. 1986. Phloem loading in maize. In: “Regulation of carbon and nitrogen reduction and utilization in maize”. Eds. J.C. Shannon, D.P. Knievel, C.D. Boyer, ch. 6.

  • Evert R.F., Mierzawa R.J. 1989. The cell wall-plasmalemma interface in sieve tubes of barley. Planta. 177: 24–34.

    Article  Google Scholar 

  • Farrar J.F. 1988. Temperature and the partitioning and translocation of carbon. In: “Plants and temperature” Eds. S.P. Long, F.I. Woodward. Symposia of the Society of Experimental Biology. 42. Cambridge: Company of Biologists. pp. 203–235.

    Google Scholar 

  • Farrar J., van der Schoot, C., Drent P., van Bel A.J.E. 1992. Symplastic transport of lucifer yellow in mature leaf blades of barley: Potential mesophyll-to-sieve-tube transfer. New Phytol. 120: 191–196

    Article  Google Scholar 

  • Fellows R.J., Egli D.B., Leggett J.E. 1979. Rapid changes in translocation patterns in soybeans following source-sink alterations. Plant Physiol. 64: 652–655.

    PubMed  CAS  Google Scholar 

  • Fensom D.S. 1972. A theory of translocation in phloem of Heracleum by contactile protein microfibrillar material. Can. J. Bot. 50:479–97.

    CAS  Google Scholar 

  • Fensom D.S., Williams E.J. 1974. A note on Allen’s suggestion for long-distance translocation in the phloem of plants. Nature 250:490–92.

    Article  Google Scholar 

  • Fondy B.R., Geiger D.R. 1980. Effect of rapid changes in sink-source ratio on export and distribution of products of photosynthesis in leaves of Beta vulgaris L. and Phaseolus vulgaris L. Plant Physiol. 66: 945–949.

    PubMed  CAS  Google Scholar 

  • Fritz E., Evert R.F., Heyser W. 1983. Microautoradiographic studies of phloem loading and transport in the leaf of Zea mays. Planta. 159: 193–206.

    Article  Google Scholar 

  • Fromm J. 1991. Control of phloem unloading by action potentials in Mimosa. Physiol. Plant. 83: 529–533.

    Article  Google Scholar 

  • Galtier N., Foyer Ch.H., Murchine E., Alred R., Quick P., Voelker T.A., Thepenier C., Lasceve G., Betsche T. 1995. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase. J. Exp. Bot. 46:1335–1344.

    CAS  Google Scholar 

  • Gamalei Y.V. 1989. Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3: 96–110.

    Article  Google Scholar 

  • Gamalei Y.V. 1991. Phloem loading and its development related to plant evolution from trees to herbs. Trees 5: 50–64.

    Article  Google Scholar 

  • Gamalei Y.V., van Bel A.J.E., Pakhomova M.V., Sjutkina A.V. 1994. Effects of temperature on the conformation of the endoplasmic reticulum and on starch accumulation in leaves with the symplasmic minor-vein configuration. Planta 194: 443–453.

    Article  CAS  Google Scholar 

  • Gedroc J.J., McConnaughay K.D.M., Coleman J.S. 1996. Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Functional Ecology. 10: 44–50.

    Article  Google Scholar 

  • Geiger D.B. 1974. Phloem loading and associated processes. In: “Phloem transport”. Eds. S.A. Aronoff, J. Dainty, P.R. Gorham, L.M. Srivastava, C.A. Swanson. New York. Plenum Press. pp. 251–281.

    Google Scholar 

  • Geiger D.R., Sovonick S.S. 1975. Effects of temperature, anoxia and other metabolic inhibitors on translocation. In: “Encyclopedia of Plant Physiology”, New Series, vol. 1. Eds M.H. Zimmermann, J.A. Milburn. Springer-Verlag, Berlin. pp. 256–287

    Google Scholar 

  • Giaquinta R.T. 1983. Phloem loading of sucrose. Ann. Rev. Plant Physiol. 34: 347–87.

    Article  CAS  Google Scholar 

  • Giaquinta R., Geiger D.R. 1977. Mechanism of cyanide inhibition of phloem translocation. Plant Physiol. 59: 178–180.

    PubMed  CAS  Google Scholar 

  • Gifford R.M., Evans L.T. 1981. Photosynthesis, carbon partitioning and yield. Ann. Rev. Plant Physiol. 32: 485–509.

    Article  CAS  Google Scholar 

  • Gilder J., Cronshaw J. 1973. The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells of Nicotiona tabacum and its relationship in phloem transport. J. Ultrastruct. Res. 44:388–404.

    Article  PubMed  CAS  Google Scholar 

  • Goeschl J.D., Magnuson C.E., Fares Y., Jaeger C.H., Nelson C.E., Strain B.R. 1984. Spontaneous and induced blocking and unblocking of phloem transport. Plant, Cell Env. 7: 607–613.

    Google Scholar 

  • Gould R.P., Minchin P.E.H., Young P.C. 1988. The effects of sulphur dioxide on phloem transport in two cereals. J. Exp. Bot. 39: 997–1007.

    Article  CAS  Google Scholar 

  • Grusak M.A., Lucas W.J. 1984. Recovery of cold-inhibited phloem translocation in sugar beet. J.Exp.Bot. 35:389–402.

    Article  Google Scholar 

  • Grusak M., Lucas W.J. 1985. Cold-inhibited phloem translocation in sugar beet. J. Exp. Bot. 36: 745–755.

    Article  Google Scholar 

  • Haritatos E., Keller F., Turgeon R. 1996. Raffinose oligosaccharide concentrations measured in individual cell and issue types in Cucumis melo L. leaves: implications for phloem loading. Planta. 198: 614–622.

    Article  CAS  Google Scholar 

  • Hejnowicz Z. 1970. Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive forces for longitudinal transport in cells. Protoplasma. 71: 343–364

    Article  Google Scholar 

  • Herren T., Feller U. 1997. Influence of increased zinc levels on phloem transport in wheat shoots. J. Plant Physiol. 150: 228–231.

    CAS  Google Scholar 

  • Heuvelink E. 1996. Re-interpretation of an experiment on the role of assimilate transport resistance in partitioning in tomato. Ann. Bot. 78: 467–470.

    Article  Google Scholar 

  • Ho L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann. Rev. Plant Physiol. 39: 355–378

    Article  CAS  Google Scholar 

  • Hoddinott J. 1983. The influence of light quality on carbohydrate translocation within corn leaf strips. New Phytol. 94: 351–358.

    Article  CAS  Google Scholar 

  • Hoddinott J., Ehret D.L., Gorham P.R. 1979. Rapid influences of water stress on photosynthesis and translocation in Phaeolus vulgaris. Can J. Bot. 57: 768–776.

    Google Scholar 

  • Hole C.C., Dearman J. 1994. Sucrose uptake by the phloem parenchyma of carrot storage root. J. Exp. Bot. 45:7–15.

    Article  CAS  Google Scholar 

  • Huber S.C. 1983. Role of sucrose phosphate synthase in partitioning of carbon in leaves. Plant Physiol. 71:818–821.

    PubMed  CAS  Google Scholar 

  • Johnson R.P.C. 1968. Microfilaments in pores between froze-etched sieve elements. Planta 81:314–32

    Article  Google Scholar 

  • Jones R.J., Griffith S.M., Brenner M.L. 1986. Sink regulation of source activity by hormonal control. In: “Regulation of carbon and nitrogen reduction and utilization in maize”. Eds. J.C. Shannon, D.P. Knievel, C.D. Boyer. ch.17.

  • Kacperska A. 1998. Plant responses to low temperature stress: signalling pathways involved. In.: “Crop development for cool and wet European climate”. Eds. P. Sowinski, B. Zagdańska, A. Anioł. Brussels: European Cooperation in the Field of Scientific and Technical Research (COST), pp. 133–146. ISBN 92-828-1810-1.

  • Kaiser W.M., Martinoia E. 1985. Absence of an apoplasmic step in assimilate transport to the phloem? A comparison of assimilate efflux from leaf slices, mesophyll protoplasts and a unicellular green alga. J. Plant Physiol. 121: 463–474.

    CAS  Google Scholar 

  • Kalt-Torres W., Kerr P.S., Usuda H., Huber S.C. 1987. Diurnal changes in maize leaf photosynthesis. Plant Physiol. 83: 283–288.

    PubMed  CAS  Google Scholar 

  • Khamis S., Chaillou S., Lamaze T. 1990. CO2 assimilation and partitioning of carbon in maize plants deprived of orthophosphate. J. Exp.Bot. 41: 1619–1625.

    Article  CAS  Google Scholar 

  • Komor E., Orlich G., Weig A., Kockenberger W. 1996. Phloem loading — not metaphysical, only complex: towards a unified model of phloem loading. J. Exp. Bot. 47: 1155–1164.

    CAS  Google Scholar 

  • Korner Ch., Pelaez-Riedl S., van Bel A.J.E. 1995. CO2 responsiveness of plants: a possible link to phloem loading. Plant, Cell Env. 18: 595–600.

    Article  Google Scholar 

  • Kuhn Ch., Franceschi V.R., Schulz A., Lemoine R., Frommer W.B. 1997. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science. 275: 1298–1300.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn C., Quick W.P., Schulz A., Riesmeier J.W., Sonnewald U., Frommer W.B. 1996. Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant, Cell Env. 19: 1115–1123.

    Article  Google Scholar 

  • Kursanov, A.I. 1997. Plant Physiology in the system of biological disciplines. Russ. J. Plant Physiol. 44: 694–696.

    CAS  Google Scholar 

  • Lang A. 1983. Turgor — regulated translocation. Plant, Cell and Env. 6: 683–689.

    Google Scholar 

  • Lee D.R., Arnold D.C. Fensom D.S. 1971. Some microscopical observations of functioning sieve tubes of Heracleum using Nomarski optics. J.Exp.Bot. 22:35–38

    Article  Google Scholar 

  • Lemoine R., Kuhn C., Thiele N., Delrot S., Frommer W.B. 1996. Antisense inhibition of sucrose transporter in potato: effects on amount and activity. Plant, Cell and Env. 19: 1124–1131.

    Article  CAS  Google Scholar 

  • Lenton J.R. 1984. Are plant growth substances involved in the partitioning of assimilate to developing reproductive sincs? Plant Growth Regulation. 2:267–276.

    Article  CAS  Google Scholar 

  • Levitt J. 1972. Responses of plants to environmental stress. Ed. T.T. Kozłowski, Academic Press, New York, pp. 1–43.

    Google Scholar 

  • Lorenc-Plucińska G. 1993. SO2 modification of sugar movement in source leaves of Robinia pseudoacacia L. Arboretum Kórnickie. 38: 65–74.

    Google Scholar 

  • Lorenz-Plucińska G., Ziegler H. 1987. Effect of sulfite and sufhydryl reagents on the phloem loading in cotyledons of Ricinus communis L. J. Plant. Phisiol. 128: 417–424.

    Google Scholar 

  • Lorenz-Plucińska G., Ziegler H. 1993. Inhibition of phloem loading by sulfite affects sugar distribution in pea leaves. Acta Soc. Bot. Pol. 62: 175–178.

    Google Scholar 

  • Lorenz-Plucińska G., Ziegler H. 1994. Sulfite sensitivity of sugar uptake by isolated veins of Pisum sativum. Photosynthetica. 30: 101–106.

    Google Scholar 

  • Lucas W.J. 1985. Phloem-loading: A metaphysical phenomenon? In: “Regulation of carbon partitioning in photosynthetic tissue” Eds. R.L. Heath, J. Preiss. American Society of Plant Physiologists, Rockville and Waverly Press, Baltimore, pp. 254–271.

    Google Scholar 

  • MacRobie E.A.C. 1971. Phloem translocation. Facts and mechanisms: a comparative survey. Biol. Rev. Cambridge Philos. Soc. 46: 429–81.

    Google Scholar 

  • Madore M.A., Webb J.A. 1981. Leaf free space analysis and vein loading in Cucurbita pepo. 59: 2550–2557.

    CAS  Google Scholar 

  • Madore M.A., Oross J.W., Lucas W.J. 1986. Symplastic transport in Ipomea tricolor source leaves. Demonstration of functional symplastic connections from mesophyll to minor veins by novel dye-tracer method. Plant Physiol. 82: 432–42.

    PubMed  CAS  Google Scholar 

  • Marschner H., Kirkby E.A., Cakmak I. 1996. Effect of mineral nutrition status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 47:1255–1263.

    CAS  Google Scholar 

  • Maurosset L., Bonnemain J.-L. 1990. Mechanism of the inhibition of phloem loading by sodium sulfite: Effect of the pollutant on the transmembrane potential difference. Physiol. Plant. 80: 233–237.

    Article  Google Scholar 

  • Maynard J.W., Lucas W.J. 1982. Sucrose and glucose uptake into Beta vulgaris leaf tissues: A case for general (apoplastic) retrieval systems. Plant Physiol. 70: 1436–1443.

    PubMed  CAS  Google Scholar 

  • Martinez-Cortina C, Sanz, A. 1994. Effect of hormones on sucrose uptake and on ATPase activity of Citrus sinensis L. Osbeck leaves. Ann. Bot. 73: 331–5.

    Article  CAS  Google Scholar 

  • Mäkëla A.A., Sievanen R.P. 1987. Comparison of two shoot — root partitioning models with respect to substrate utilisation and functional balance. Ann. Bot. 59: 129–140.

    Google Scholar 

  • McKinion J.M., Sequeira R.A. 1994. Mechanics of model building. Hort Sci. 29: 1413–1415.

    Google Scholar 

  • Milburn J.A. 1980. The measurement of turgor pressure in sieve tubes. Ber. Deitsch. Bot. Ges. Bd. 93: 153–166.

    Google Scholar 

  • Minchin P.E.H., Gould R. 1986. Effect of SO2 on phloem loading. Plant Science. 43:179–183.

    Article  CAS  Google Scholar 

  • Minchin P.E.H., Thorpe M.R. 1987. Is phloem transport due to a hydrostatic pressure gradient? Supporting evidence from pressure chamber experiments. Aust. J. Plant Physiol. 14: 397–402.

    Article  Google Scholar 

  • Moing A., Carbonne F., Zipperlin B., Svanella L., Gaudillere J.-P. 1997. Phloem loading in peach: symplastic or apoplastic? Physiol. Plant. 101: 489–496.

    Article  CAS  Google Scholar 

  • Morris D.A. 1996. Hormonal regulation of source-sink relationships: an overview of potential control mechanisms. Photoassimilate distribution in plants and crops. 19: 441–465.

    Google Scholar 

  • Münch E. 1930. Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena.

    Google Scholar 

  • Neuhaus H.E., Quick W.P., Siegl G., Sitt M. 1990. Control of photosynthate partitioning in spinach leaves. Planta. 181: 583–592.

    Article  CAS  Google Scholar 

  • Ng C.K.Y. Hew Ch.S.H. 1996. Pathway of phloem loading in the C3 tropical orchid hybrid Oncidium Goldiana. J. Exp. Bot. 47: 1935–1939.

    Article  CAS  Google Scholar 

  • Niklas K.J., O’Rourke T.D. 1982. Growth patterns of plants that maximise vertical growth and minimize internal stress. Ann. J. Bot. 69: 1367–1374

    Article  Google Scholar 

  • Oparka K.J. 1990. What is phloem unloading? Plant Physiol. 94: 393–396.

    PubMed  CAS  Google Scholar 

  • Orlich G., Komor E. 1992. Phloem loading in Ricinus cotyledons: sucrose pathways via the mesophyll and apoplasm. Planta 187: 460–474.

    Article  CAS  Google Scholar 

  • Patrick J.W. 1997. Phloem unloading: sieve element unloading and post-sieve element transport. Ann. Rev. Plant Physiol. Mol. Biol. 48: 191–222.

    Article  CAS  Google Scholar 

  • Patrick J.W., Offler C.E. 1995. Post-sieve element transport of sucrose in developing seeds. Aust. J. Plant. Physiol. 22: 681–702.

    CAS  Google Scholar 

  • Pausch R.C., Mulchi Ch.L., Lee E.H., Foseth I.N., Slaughter. 1996. Use of 13C and 15N isotopes to investigate O3 effects on C and N metabolism in soybeans. Part 1. C fixation and translocation. Agric. Ecosyst. Environ. 59: 69–80.

    Article  CAS  Google Scholar 

  • Potvin C., Goeschl J.D., Strain B.R. 1984. Effects of temperature and CO2 enrichment on carbon translocation of plants of the C4 grass species Echinochloa crusgalli (L.) Beauv. from cool and warm environments. Plant Physiol. 75: 1054–1057.

    PubMed  CAS  Google Scholar 

  • Reddy V.R., Pachepsky L.B., Acock B. 1994. Response of crop photosynthesis to carbon dioxide, temperature, and light: experimentation and modelling. Hort Sci. 29: 1415–1422.

    Google Scholar 

  • Rentsch D., Frommer W.B. 1996. Molecular approaches towards an understanding of loading and unloading of assimilates in higher plants. J. Exp. Bot. 47.: 1199–1204.

    Google Scholar 

  • Robidoux J., Sandborn E.B., Fensom D.S. Cameron M.L., 1973. Plasmatic filaments and particles in mature sieve elements of Heracleum sphondylium under the electron microscope. J.Exp.Bot. 24:349–59

    Article  Google Scholar 

  • Romberger J.A., Hejnowicz Z., Hill J.F. 1993. Plant structure: function and development. A treatise on anatomy and vegetative development with special reference to woody plants. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest

    Google Scholar 

  • Sakuth T., Schobert Ch., Pecsvaradi A., Eichholz A., Komor E., Orlich G. 1993. Specific proteins in the sieve-tube exudate of Ricinus communis L. seedlings: separation, characterization and in-vivo labelling. Planta. 191: 207–213.

    Article  CAS  Google Scholar 

  • Sasek T.W. Delucia E.H., Strain B.R. 1985. Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations. Physiol. Plant. 78: 619–622.

    CAS  Google Scholar 

  • Schulz A. 1994. Phloem transport and differential in pea seedlings after source and sink manipulations. Planta. 192: 239–248.

    Article  CAS  Google Scholar 

  • Schulz A. 1995. Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root tips under osmotic stress. Protoplasma. 188: 22–37.

    Article  Google Scholar 

  • Singh B.P. 1994. Modelling photosynthesis and carbon partitioning: Introduction to the workshop. Hort Sci. 29: 1412–1413.

    Google Scholar 

  • Sjölund R.D. 1997. The phloem sieve element: A river runs through it. Plant Cell. 9: 1137–1146.

    Article  PubMed  Google Scholar 

  • Slack G., Calvert A. 1977. The effect of truss removal on the yield of early sown tomatoes. J. Hort. Sci. 52: 309–315.

    Google Scholar 

  • Smith J.A.C., Milburn J.A. 1980. Water stress and phloem loading. Ber. Deutsch. Bot. Bd. 93: 269–280.

    Google Scholar 

  • Smith J.A.C., Milburn J.A. 1980. Osmoregulation and the control of phloem-sap composition in Ricinus communis L. Planta. 148: 28–34.

    Article  CAS  Google Scholar 

  • Sowiński P. 1992. Zmiany klimatu a rolnictwo. Biul. IHAR. 182: 21–30.

    Google Scholar 

  • Sowiński P. 1995. Transport of assimilates from leaves to roots in chilling-treated maize seedlings. Acta Physiol. Plant. 17: 341–8.

    Google Scholar 

  • Sowiński P. 1998a. Assimilate transport in maize seedlings treated with the moderate chilling. In: “Crop development for cool and wet European Climate”. Eds. P. Sowinski, B. Zagdańska, A. Anioł. Brussels: European Cooperation in the Field of Scientific and Technical Research (COST), pp. 65–69. ISBN 92-828-1810-1.

    Google Scholar 

  • Sowiński P. 1998b. The effect of irradiance, p-chloromercuribenzensulphonic acid and fusicoccin on the long distance transport in Zea mays L. seedlings. Acta Physiol. Plant. 20:79–84.

    Google Scholar 

  • Sowiński P, Królikowski Z. 1995. Chilling sensitivity in maize seedlings. III. Relations between growth and functioning at low temperatures and during post-stress recovery. Acta Physiol. Plant. 17, 219–24.

    Google Scholar 

  • Sowiński P., Malaszewski S. 1989. Chiling-sensitivity in maize seedlings. I. Growth and functioning of shoots and roots. Acta Phisiol. Plant. 11: 165–171.

    Google Scholar 

  • Sowiński P., Maleszwski S. 1990. Chilling-sensitivity in maize seedlings. II. Effect of low temperature on transport of 14C-assimilates from leaves to roots. Acta Physiol. Plant. 12: 35–40.

    Google Scholar 

  • Sowiński P., Parys E., Dembiński E., Falfus J., Romanowska E., Ślaski J. 1991. Rośliny w zmieniającym się klimacie: efekt szklarniowy. Wiad. Bot.. 35:17–34.

    Google Scholar 

  • Sowiński P., Richner W., Soldati A., Stamp P. 1998. Assimilate transport in maize (Zea mays L.) seedlings at vertical low temperature gradients in the root zone. J. Exp. Bot. 49: 747–752.

    Article  Google Scholar 

  • Spanner D.C. 1975. The electroosmotic flow. In: “Encyclopedia of Plant Physiology”. Eds. M.H. Zimmermann, J.A. Milburn. vol. 1. Springer Verlag, Berlin, pp. 301–327.

    Google Scholar 

  • Spanner D.C. 1979. The electroosmotic theory of phloem transport: a final restatement. Plant, Cell and Env. 2: 107–121.

    Article  Google Scholar 

  • Stadler R., Brandner J., Schulz A., Gahrtz M., Sauer N. 1995. Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell. 7: 1545–1554.

    Article  PubMed  CAS  Google Scholar 

  • Stadler R., Sauer N. 1996. The Arabidopsis thaliana AtSUC2 Gene is specifically expressed in companion cells. Bot. Acta. 109: 261–340.

    Google Scholar 

  • Starck Z. 1995. Współzalezność pomiędzy fotosyntezą i dystrybucją asymilatów a tolerancją roślin na niekorzystne warunki środowiska. Postępy Nauk Rolniczych. nr 3, 19–35.

  • Starck Z., Niemyska B., Chołuj D. 1996. Post-effect to chilling stress on competitive ability of sinks in tomato plants. Acta Physiol. Planta. 18: 75–83.

    Google Scholar 

  • Stitt M., Quick W.P. 1989. Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiol. Plant. 77: 633–641.

    Article  CAS  Google Scholar 

  • Sung F.J.M., Krieg D.R. 1979. Relative snsitivity of photosinthetic assimilation and translocation of 14C carbon to water stress. Plant Phisiol. 64: 852–856.

    Article  CAS  Google Scholar 

  • Thornley J.H.M. 1995. Shoot:root allocation with respect to C, N and P: an investigation and comparision of resistance and teleonomic models. Ann. Bot.. 75:391–405.

    Article  Google Scholar 

  • Thorpe M.R., Minchin P.E.H., Dye E.A. 1979. Oxygen effects on phloem loading. Plant Sci.Let.. 15: 345–350.

    Article  CAS  Google Scholar 

  • Thorpe M.R., Minchin P.E.H. 1987. Effects of anoxia on phloem loading in C3 and C4 species. J.Exp. Bot. 38: 221–232.

    Article  Google Scholar 

  • Toth F.K., Qi Wang, Sjölund R.D. 1994. Monoclonal antibodies against phloem P-protein from plant tissue cultures. I. Microscopy and biochemical analysis. Am. J. Bot. 81: 1370–1377.

    Article  Google Scholar 

  • Toth K.F., Sjölund R.D. 1994. Monoclonal antibodies against phloem P-protein from plant tissue cultures. II. Taxonomic distribution of cross-reactivity. Am. J. Bot. 81: 1378–1383.

    Article  Google Scholar 

  • Troughton J.H., Currie B.G. 1977. Relations between light level, sucrose concetration, and translocation of carbon 11 in Zea mays leaves. Plant Physiol. 59: 808–820.

    PubMed  CAS  Google Scholar 

  • Turgeon R. 1991. Symplastic phloem loading and the sink — source transition in leaves: a model. In: “Recent advances in phloem transport and assimilate compartmentation”. Eds. J.L. Bonnemain, S. Delrot, W.J. Lucas, J. Dainty. Quest Editions, Nates, pp. 18–22

  • Turgeon R. 1996. Phloem loading and plasmodesmata. Trends in plant science. 1: 418–423.

    Article  Google Scholar 

  • Van Bel A.J.L. 1987. The apoplast concept of phloem loading has no universal validity. Plant Physiol. Biochem. 25: 677–686.

    Google Scholar 

  • Van Bel A.J.L. 1992. Different phloem-loading machineries correlated with the climate. Acta Bot. Neerl. 41:121–141.

    Google Scholar 

  • Van Bel A.J.E., Van Rijen H.V.M. 1994. Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192: 165–175

    Article  Google Scholar 

  • Van Bel A.J.E., Hendriks J.H.M., Boon E.J.M.C., Gamalei Y.V., van Merwe A.Ph. 1996. Different ratios of sucrose/raffinose-induced membrane depolarizations in the mesophyll of species with symplasmic (Catharanthus roseus, Ocimum basilicum) or apoplasmic (Impatiens walleriana, Vicia faba) minor-vein configurations. Planta. 199: 185–192.

    Article  Google Scholar 

  • Van Oene M.A., Kolloffel C., Wolswinkel P. 1992. Sink-source interactions: accumulation of sucrose in the apoplast and symplast of the source leaves as a result of sink strength reduction in Pisum sativum L. Acta Bot. Neerl. 41: 143–149.

    Google Scholar 

  • Verhey S.D., Lomax T.L. 1993. Signal tranduction in vascular plants. J. Plant Growth Regul. 12: 179–195.

    Article  CAS  Google Scholar 

  • Vreugdenhil D. 1985. Source-to-sink gradient of potassium in the phloem. Planta. 163: 238–240.

    Article  CAS  Google Scholar 

  • Vreugdenhil D., Kerckhoffs L.H.J. 1992. Abscisic acid stimulates sucrose uptake into tobacco leaf discs. Acta Bot. Neerl. 41: 161–65.

    CAS  Google Scholar 

  • Wang N., Fisher D.B. 1994. The use of fluorescent tracers to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiol. 104: 17–27.

    PubMed  CAS  Google Scholar 

  • Wang N., Nobel P.S. 1995. Phloem exudate collected via scale insect stylets for the CAM species Opuntia ficus-indica under current and doubled CO2 concetrations. Ann. Bot. 75: 525–532.

    Article  Google Scholar 

  • Wang Q., Monroe J., Sjölund R.D. 1995. Identification and characterization of a phloem- specific B-amylase. Plant Physiol. 109: 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Weatherley P.E., Johnson R.P.C. 1968. The form and function of the sieve tube: a problem in reconciliation. Int. Rev. Cytol. 24: 149–92.

    Article  PubMed  CAS  Google Scholar 

  • Wong S.-C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth II. Non-structural carbohydrate content in cotton plants and its effects on growth parameters. Photos. Res. 23: 171–180.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowiński, P. Transport of photoassimilates in plants under unfavourable environmental conditions. Acta Physiol Plant 21, 75–85 (1999). https://doi.org/10.1007/s11738-999-0030-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0030-z

Key words

Navigation