Skip to main content
Log in

Plant heat shock transcription factors: positive and negative aspects of regulation

  • High Temperature Stress
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Six heat shock transcription factors (HSFs) have been isolated and characterized from soybean and two from Arabidopsis (Czarnecka-Verner et al. 1995; Barros, Czarnecka-Verner and Gurley, unpublished). Based on a phylogeny analysis of the DNA binding domains and organization of oligomerization domains, they have been assigned to classes A2 and B of the plant HSF family (Nover et al. 1996). In vivo studies of full length HSFs were conducted in transient expression systems using a GUS reporter driven by a heat shock element (HSE) located upstream from the minimal 35S CaMV promoter. Neither soybean nor Arabidopsis HSF class B members were able to function as transcriptional activators under control or heat stress conditions. Conversely, class A HSFs from tomato and Arabidopsis have the capacity to activate transcription. Co-expression studies of activator HSFs from tomato and Arabidopsis, and inert HSFs from soybean and Arabidopsis demonstrated that the inert HSFs were able to trans-attenuate the transcriptional activity of activator HSFs. We suggest that heat shock regulation in plants may differ from metazoan systems by partitioning negative and positive functional domains onto separate HSF proteins. In plants two classes of HSFs exist: class A members, i.e. HSF activators, and a novel class B (inert HSFs) which is largely specialized for repression, or attenuation, of the heat shock response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cotto J.J., Kline M., Morimoto R.I. 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J. Biol. Chem. 271: 3355–8.

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka-Verner E., Yuan C.-X., Fox P.C., Gurley W.B. 1995. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean. Plant Mol. Biol. 29: 37–51.

    Article  PubMed  CAS  Google Scholar 

  • Gagliardi D., Breton C., Chaboud A., Vergne P., Dumas C. 1995. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol. Biol. 29: 841–856.

    Article  PubMed  CAS  Google Scholar 

  • Green M. S., T. J., Sullivan E. K., Kingston R. E. 1995. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15(6):3354–3362.

    PubMed  CAS  Google Scholar 

  • Hubel A., Lee J.H., Wu C., Schöffl F. 1995. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells. Mol. Gen. Genet. 248:136–141.

    Article  PubMed  CAS  Google Scholar 

  • Hubel A., Schöffl F. 1994. Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol. Biol. 26: 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Hull G.A., Devic M. 1995. The b-glucuronidase (GUS) reporter gene system. In Plant gene transfer and expression protocols., edited by H. Jones. University of Hertfordshire, Hatfield, UK: Humana Press, Tatowa, New Jersey.

    Google Scholar 

  • Jurivich D.A., Sistonen L., Kroes R.A., Morimoto R.I. 1992. Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245.

    Article  PubMed  CAS  Google Scholar 

  • Kline M.P., Morimoto R.I. 1997. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17: 2107–2115.

    PubMed  CAS  Google Scholar 

  • Lee J.H., Schöffl F. 1996. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet. 252: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Nakai A., Tanabe M., Kawazoe Y., Inazawa J., Morimoto R.I., Nagata K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17: 469–481.

    PubMed  CAS  Google Scholar 

  • Newton E.M., Knauf U., Green M., Kingston R.E. 1996. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol. Cell. Biol. 16(3): 839–846.

    PubMed  CAS  Google Scholar 

  • Nover L., Scharf K.-D., Gagliardi D., Vergne P., Czarnecka-Verner E., Gurley W.B. 1996. The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress & Chaperones 1: 215–223.

    Article  CAS  Google Scholar 

  • Rabindran S.K., Haroun R.I., Clos J., Wisniewski J., Wu C. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259: 230–234.

    Article  PubMed  CAS  Google Scholar 

  • Scharf K.-D., Rose S., Zott W., Schöffl F., Nover L. 1990. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 9: 4495–4501.

    PubMed  CAS  Google Scholar 

  • Shi Y., Kroeger P.E., Morimoto R.I. 1995. The carboxyl-terminal transactivation domain of heat shock factor is negatively regulated and stress responsive. Mol. Cell. Biol. 15: 4309–4318.

    PubMed  CAS  Google Scholar 

  • Shimizu S., Itoh Y., Yamazaki K. 1996. Temperature-dependent increase in the DNA-binding activity of a heat shock factor in an extract of tobacco culture cells. Plant Mol. Biol. 31:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Treuter E., Nover L., Ohme K., Scharf K.-D. 1993. Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol. Gen. Genet. 240: 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Winegarden N.A., Wong K.S., Sopta M., Westwood J.T. 1996. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila. J. Biol. Chem. 271: 26971–80.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski J., Orosz A., Allada R., Wu C. 1996. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain. Nucleic Acids Res. 24: 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Wu C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–69.

    Article  PubMed  CAS  Google Scholar 

  • Zuo J., Rungger D., Voellmy R. 1995. Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15: 4319–4330.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarnecka-Verner, E., Yuan, CX., Nover, L. et al. Plant heat shock transcription factors: positive and negative aspects of regulation. Acta Physiol Plant 19, 529–537 (1997). https://doi.org/10.1007/s11738-997-0050-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-997-0050-5

Keywords

Navigation