Skip to main content

Advertisement

Log in

Oxidative stress in plants

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Oxidative stress, defined as a shift of the balance between prooxidative and antioxidative reactions in favor of the former seems to be a common denominator of the action of various agents on living organisms. This review briefly presents the sources of reactive oxygen species and means of antioxidative defense in plants, means of assessment of oxidative stress and exemplary data on the induction of oxidative stress by various environmental and biological factors such as hyperoxia, light, drought, high salinity, cold, metal ions, pollutants, xenobiotics, toxins, reoxygenation after anoxia, experimental manipulations, pathogen infection and aging of plant organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

OS:

oxidative stress

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Apostol, I., Heinstein, P.F., Low, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90: 109–116.

    PubMed  CAS  Google Scholar 

  • Asada, K. 1992. Production and scavenging of active oxygen in chloroplasts. In: Molecular biology of free radical scavenging systems, ed. by J.G. Scandalios, Cold Spring Harbor Laboratory Press, Cold Spring Harbor: 173–192.

    Google Scholar 

  • Asada, K., Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition, ed. by D.J. Kyle, Osmond, C.B., Arntzen, C.J., Elsevier, Amsterdam: 227–288.

    Google Scholar 

  • Auclair, C., Voisin, E. 1985. Nitrobluc tetrazolium reduction. In: CRC handbook of methods for oxygen radical research, ed. by R.A. Greenwald, CRC Press, Boca Raton, FL: 123–132.

    Google Scholar 

  • Babior, B.M. 1991. Oxidants from phagocytes: agents of defense amd destruction. Blood 64: 959–966.

    Google Scholar 

  • Baker, C.J., Orlandi, E.W., Mock, N.M. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production of suspension cells. Plant Physiol. 102: 1341–1344.

    PubMed  CAS  Google Scholar 

  • Baker, J.E., Wang, C.Y., Lieberman, M., Hardenburg, R. 1977. Delay of senescence in carnations by a rhizobitoxine analog and sodium benzoate. Hort Sci. 12: 38–39.

    CAS  Google Scholar 

  • Baker, J.E., Wang, C.Y., Terlizzi, D.E. 1985. Delay of senescence in carnations by pyrazone, phenidone analogs and Tiron. Hort Sci. 20: 121–122.

    CAS  Google Scholar 

  • Barna, B., Ádám, A.L., Király, Z. 1993. Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. Naturwissensch. 80: 420–422.

    Article  Google Scholar 

  • Bartosz, G. 1996. Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim. Pol. 43: 645–660.

    PubMed  CAS  Google Scholar 

  • Becker, B.F. 1993. Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631.

    Article  PubMed  CAS  Google Scholar 

  • Beyer R.E. 1992. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell Biol. 70: 390–403.

    Article  PubMed  CAS  Google Scholar 

  • Biclski, B.H.J., Richter, H.W. 1975. Some properties of the ascorbate free radical. Ann. N. Y. Acad. Sci. 258: 231–237.

    Article  Google Scholar 

  • Bird, R.P., Draper, H.H. 1984. Comparative studies on different methods of malonaldehyde determination. Methods Enzymol. 105: 299–305.

    PubMed  CAS  Google Scholar 

  • Bolwell, G.P., Butt, V.S., Davies, D.R., Zimmerlin, A. 1995. The origin of the oxidative burst in plants. Free Rad. Res. 23: 517–532.

    CAS  Google Scholar 

  • Borraccino, G., Dipiero, S., Arrigoni, O. 1986. Purification and prooperties of ascorbate free-radical reductase from potato tubers. Planta 167: 521–526.

    Article  CAS  Google Scholar 

  • Boveris, A. 1984. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 105: 429–435.

    PubMed  CAS  Google Scholar 

  • Bradley, D.J., Kjellbom, P., Lamb, C.J. 1992. Elicitorand wound-induced oxidative cross-linking of prolinerich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Breen, A.P., Murphy, J.A. 1995. Reactions of oxyl radicals with DNA. Free Rad. Biol. Med. 18: 1033–1077.

    Article  PubMed  CAS  Google Scholar 

  • Brot, N., Weissbach, H. 1983. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 223: 271–281.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, R.J., West, C.A. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 91: 889–897.

    PubMed  CAS  Google Scholar 

  • Buja, L.M., Eigenbrodt, M.L., Eigenbrodt, E.H. 1993. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med. 117: 1208–1214.

    PubMed  CAS  Google Scholar 

  • Buttke, T.M., Sandstrom, P.A. 1994. Oxidative stress as a mediator of apoptosis. Immunol. Today 15: 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Cai, L., Koropatnick, J., Cherian, M.G. 1995. Metallothionein protects DNA from copper-induced but not iroon-induced cleavage in vitro. Chem. Biol. Interact. 96: 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Cao, G., Cutler, R.G. 1995. Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch. Biochem. Biophys. 320: 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Caro, A., Puntarulo, S. 1996. Effect of in vivo iron supplementation on oxygen radical production by soybean roots. Biochim. Biophys. Acta 1291: 245–251.

    PubMed  CAS  Google Scholar 

  • Chen, Z., Silva, H., Klessig, D.F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  • Corpas, F.J., Gómez, M., Hernández, J.A., del Río, L.A. 1993. Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J. Plant Physiol. 141: 160–165.

    CAS  Google Scholar 

  • Daub, M.E., Hangarter, R.P. 1983. Production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol. 73: 855–857.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A. 1986. Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis. J. Free Rad. Biol. Med. 2: 155–173.

    Article  CAS  Google Scholar 

  • Davies, K.J.A., Goldberg, A.L. 1987. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J. Biol. Chem. 262: 8227–8234.

    PubMed  CAS  Google Scholar 

  • Deisseroth, A., Dounce, A.L. 1970. Catalase: Physical and chemical properties, mechanism of catalysis and physiological role. Physiol. Rev. 50: 319–375.

    PubMed  CAS  Google Scholar 

  • del Rio, L.A., Donaldson, R.P. 1995. Production of superoxide radicals in glyoxysomal membranes from castor bean endosperm. J. Plant Physiol. 146: 283–287.

    Google Scholar 

  • del Rio, L.A., Fernandez, V.M., Ruperez, F.L., Sandalio, L.M., Palma, J.M. 1989. NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol. 89: 728–731.

    PubMed  Google Scholar 

  • del Rio, L.A., Palma, J.M., Sandalio, L.M., Corpas, F.J., Pastori, G.M., Bueno, P., López-Huertas, E. 1996. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans. 24: 434–438.

    PubMed  Google Scholar 

  • Dipiero, S., Borraccino, G. 1991. Dehydroascorbate reductase from potato tubers. Phytochem. 30: 427–429.

    Article  Google Scholar 

  • Doetsch, P.W., Helland, D.E., Haseltine, W.A. 1986. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry 25: 2212–2220.

    Article  PubMed  CAS  Google Scholar 

  • Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23: 345–357.

    CAS  Google Scholar 

  • Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., Kawakita, K. 1996. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence — a review. Gene 179: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Dominy, P.J., Heath, R.L. 1985. Inhibition of the K+-stimulated ATPase of the plasmalemma of pinto bean leaves by ozone. Plant Physiol. 77: 43–45.

    PubMed  CAS  Google Scholar 

  • Droillard, M.J., Paulin, A., Massot, J.C. 1987. Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Plant Physiol. 71: 197–202.

    Article  CAS  Google Scholar 

  • Ebadi, M., Leuschen, M.P., el Refaey, H., Hamada, F.M., Rojas, P. 1996. The antioxidant properties of zinc and metallothionein. Neurochem. Int. 29: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Elia, M.R., Borraccino, G., Dipiero, S. 1992. Soluble ascorbate peroxidase from potato tubers. Plant Sci. 85: 17–21.

    Article  CAS  Google Scholar 

  • Elstner, E.F. 1991. Oxygen radicals — biochemical basis for their efficacy. Klin. Wochenschr. 69: 949–956.

    Article  PubMed  CAS  Google Scholar 

  • Fagan, J.M., Waxman, L. 1992. The ATP-independent pathway in red blod cells that degrades oxidant-damaged hemoglobin. J. Biol. Chem. 267: 23015–23022.

    PubMed  CAS  Google Scholar 

  • Farage, P.K., Long, S.P., Lechner, E.G., Baker, N. 1991. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol. 95: 529–535.

    PubMed  CAS  Google Scholar 

  • Farrington, J.A., Ebert, M., Land, E.J., Fletcher, K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta 314: 372–381.

    Article  PubMed  CAS  Google Scholar 

  • Feierabend, J., Streb, P., Schmidt, M., Dehne, S., Shang, W. 1996. Expression of catalase and its relation to light stress and stress tolerance. In: Physical stresses in plants. Genes and their products for tolerance, ed. by S. Grillo, Leone, A., Springer, Berlin, Heidelberg, New York, Barcelona, Budapest, Hong Kong, London, Milan, Paris, Santa Clara, Singapore, Tokyo: 223–234.

    Google Scholar 

  • Flohé, L., Schlegel, W. 1971. Glutathion-peroxidase. IV. Hoppe-Seyler’s Z. Physiol. Chem. 352: 1401–1410.

    Google Scholar 

  • Foster, J.G., Hess, J.L. 1980. Responses of superoxide dismmutase and glutathione peroxidase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66: 482–487.

    PubMed  CAS  Google Scholar 

  • Foti, M., Piattelli, M., Baratta, M.T., Ruberto, G. 1996. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J. Agr. Food Chem. 44: 497–501.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.-J., Pruvost, C., Jouanin, L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  • Frei, B., Kim, M.C., Ames, B.N. 1990. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87: 4879–4883.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1978. The biology of oxygen radicals. Science 201: 875–880.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1985. Cytochrome c. In: CRC handbook of methods for oxygen radical research, ed. by R.A. Greenwald, CRC Press, Boca Raton, FL: 121–122.

    Google Scholar 

  • Furbank, R.T., Badger, M.R. 1983. Oxygen exchange associated with electron transport and photophosphorylation in spinach chloroplasts. Biochim. Biophys. Acta 723: 400–409.

    Article  CAS  Google Scholar 

  • Gérard-Monnier, D., Chaudiere, J. 1996. Métabolisme et fonction antioxydante du glutathion. Path. Biol. 44: 77–85.

    Google Scholar 

  • Gille, G., Sigler, K. 1995. Oxidative stress and living cells. Folia Microbiol. 40: 131–152.

    CAS  Google Scholar 

  • Graf E. 1992. Antioxidant potential of ferulic acid. Free Rad. Biol. Med. 13: 435–448.

    Article  PubMed  CAS  Google Scholar 

  • Graf, E., Eaton, J.W. 1990. Antioxidant functions of phytic acid. Free Rad. Biol. Med. 8: 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., Guo, A., Klessig, D.F., Ausubel, F.M. 1994. Programmed cell death in plants: a pathogentriggered response activated coordinately with multiple defense functions. Cell 77: 551–563.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J., Allen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90: 1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge J.M.C. 1986. Aspects to consider when detecting and measuring lipid peroxidation. Free Rad. Res. Comm. 1: 173–184.

    CAS  Google Scholar 

  • Halliwell B. 1982. The toxic effects of oxygen on plant tissues. In: Superoxide dismutase, ed. by L.W. Oberley, CRC Press, Boca Raton, FL: 89–123.

    Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C. 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  • Hendry, G.A.F. 1993. Oxygen, free radical processes and seed longevity. Seed Sci. Res. 3: 141–153.

    CAS  Google Scholar 

  • Hernández, J.A., Corpas, F.J., Gómez, M., del Rio, L.A., Sevilla, F. 1993. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89: 103–110.

    Article  Google Scholar 

  • Hertwig, B., Streb, A., Feierabend, J. 1992. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol. 100: 1547–1553.

    PubMed  CAS  Google Scholar 

  • Hippeli, S., Elstner, E.F. 1996. Mechanisms of oxygen activation suring plant stress: biochemical effects of air pollutants. J. Plant Physiol. 148: 249–257.

    CAS  Google Scholar 

  • Holmgren A. 1989. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264: 13963–13966.

    PubMed  CAS  Google Scholar 

  • Ingold, K.U., Webb, A.C., Witter, D., Burton, G.W., Metcalfe, T.A., Muller, D.P.R. 1987. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch. Biochem. Biophys. 259: 224–225.

    Article  PubMed  CAS  Google Scholar 

  • Jacks, T.J., Davidonis, G.H. 1996. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol. Cell. Biochem. 158: 77–79.

    PubMed  CAS  Google Scholar 

  • Jahnke, L.S., Hull, M.R., Long, S.P. 1991. Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environm. 14: 97–104.

    Article  CAS  Google Scholar 

  • Janzen E.G. 1990. Spin trapping and associated vocabulary. Free Rad. Res. Comm. 9: 163–167.

    CAS  Google Scholar 

  • Kamal-Eldin, A., Appelqvist, L.-A. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701.

    Article  PubMed  CAS  Google Scholar 

  • Kauss, H., Jeblick, W. 1995. Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol. 108: 1171–1178.

    PubMed  CAS  Google Scholar 

  • Khan, A.U., Wilson, T. 1995. Reactive oxygen species as cellular messengers. Chem. Biol. 2: 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Kirtikara, K., Talbot, D. 1996. Alteration in protein accumulation, gene expression and ascorbate-glutathione pathway in tomato (Lycopersicon esculentum) under paraquat and ozone stress. J. Plant Physiol. 148: 752–760.

    CAS  Google Scholar 

  • Kozubek, A., Nienartowicz, B. 1995. Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim. Pol. 42: 309–316.

    PubMed  CAS  Google Scholar 

  • Larrgilliere, C., Mélancon, S.B. 1988. Free malondialdehyde determination in human plasma by high-performance liquid chromatography. Anal. Biochem. 170: 123–126.

    Article  Google Scholar 

  • Legendre, L., Rueter, S., Heinstein, P.F., Low, P.S. 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 102: 233–240.

    PubMed  CAS  Google Scholar 

  • Leshem Y.Y. 1988. Plant senescence processes and free radicals. Free Rad. Biol. Med. 5: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Leshem, Y.Y., Haramaty, E. 1996. The characterization and contrasting effects of the nitric oxide free radical in Pisum sativum Linn. foliage. J. Plant Physiol. 148: 258–263.

    CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A., Ahn, B.W., Shaltiel, S., Stadtman, E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464–477.

    PubMed  CAS  Google Scholar 

  • Lim, B.P., Nagao, A., Terao, J., Tanaka, K., Suzuki, T., Takama, K. 1992. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta 1126: 178–184.

    PubMed  CAS  Google Scholar 

  • Lind, C., Hochstein, P., Ernster, L. 1982. DT-Diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch. Biochem. Biophys. 216: 178–185.

    Article  PubMed  CAS  Google Scholar 

  • Lobreaux, S., Briat, J.-F. 1991. Ferritin accumulation and degradation in differrent organs of pea (Pisum sativum) during development. Biochem. J. 274: 601–606.

    PubMed  CAS  Google Scholar 

  • Low, P.S., Heinstein, P.F. 1986. Elicitor stimulattion of the defense response in cultured plant cells monitored by fluorescent dyes. Arch. Biochem. Biophys. 249: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Low, P.S., Merida, J.R. 1996. The oxidative burst in plant defense: function and signal transduction. Physiol. Plant. 96: 533–542.

    Article  CAS  Google Scholar 

  • Matters, G.L., Scandalios, J.G. 1986. Changes in plant gene expression during stress. Dev. Genet. 7: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J., Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  • McCord J.M. 1985. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D., Bowley, S.R., Harjanto, E., Leprince, O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111: 1177–1181.

    PubMed  CAS  Google Scholar 

  • McKersie, B.D., Chen, Y., de Beus, M., Bowley, S.R., Bowley, C., Inzé, D., D’Halluin, K., Botterman, J. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103: 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Meister A. 1983. Selective modification of glutathione metabolism. Science 220: 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Michalski, W.P., Kaniuga, Z. 1982. Photosynthetic apparatus of chilling-sensitive plants. XI. Reversibility by light of cold- and dark-induced inactivation of cyanide-sensitive superoxide dismutase activity in tomato leaf chloroplasts. Biochim. Biophys. Acta 680: 250–257.

    Article  CAS  Google Scholar 

  • Monk, L.S., Fagerstedt, K.V., Crawford, R.M. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76: 456–459.

    CAS  Google Scholar 

  • Mostowska A., Gwóźdź E.A. 1995. Reaction of photosynthetic apparatus to oxidative stress. Post. Biol. Kom. 22: 43–63.

    CAS  Google Scholar 

  • Motoyama, T., Miki, M., Mino, M., Takahashi, M., Niki, E. 1989. Synergistic inhibition in dispersed phosphatidylcholine liposomes by a combination of vitamin E and cysteine. Arch. Biochem. Biophys., 270: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux, P.M., Creissen, G.P. 1996. Opportunities for the genetic manipulation of antioxidants in plant foods. Biochem. Soc. Trans. 24: 829–835.

    PubMed  CAS  Google Scholar 

  • Murphy, M.E., Sies, H. 1990. Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 186: 595–610.

    PubMed  CAS  Google Scholar 

  • Navari-Izzo, F., Quartacci, M.F., Sgherri, C.M.L. 1996. Superoxide generation in relation to dehydration and rehydration. Biochem. Soc. Trans. 24: 447–451.

    PubMed  CAS  Google Scholar 

  • Neužil, J., Stocker, R. 1993. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 331: 281–284.

    Article  PubMed  Google Scholar 

  • Okuda, T., Matsuda, Y., Sugawara, M., Sagisaka, S. 1992. Metabolic response to treatment with cold, paraquat or 3-amino-1,2,4-triazole in leaves of winter wheat. Biosci. Biotechnol. Biochem. 56: 1911–1915.

    Article  PubMed  CAS  Google Scholar 

  • Palozza, P., Krinsky, N.I. 1992. Astaxanthin and canthaxanthin are potent antixoidants in a membrane model. Arch. Biochem. Biophys. 297: 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Park, E.M., Shigenaga, M.K., Degan, P., Korn, T.S., Kitzler, J.W., Wehr, C.M., Kolachana, P., Ames, B.N. 1992. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc. Nat. Acad. Sci. USA 89: 3375–3379.

    Article  PubMed  CAS  Google Scholar 

  • Pastori, G.M., Trippi, V.S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33: 957–961.

    CAS  Google Scholar 

  • Paulin, A., Droillard, M., J., Bureau, J.M. 1986. Effect of a free radical scavenger, 3,4,5-trichlorophenol, on ethylene production and on changes in lipids and membrane integrity during senscence of petals of cut carnations (Dianthus caryophyllus). Physiol. Plant. 67: 465–471.

    Article  CAS  Google Scholar 

  • Peskin A.V. 1997. Cu,Zn-superoxide dismutase gene dosage and cell resistance to oxidative stress: a review. Biosci. Rep. in press.

  • Pick E. 1986. Microassays for superoxide and hydrogen peroxide production and nitriblue tetrazolium reduction using and enzyme immunoassay microplate reader. Methods Enzymol. 132: 407–421.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher, L.H., Brennan, E., Hurley, A., Dunsmuir, P., Tepperman, J.M., Zilinskas, B.A. 1991. Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97: 452–455.

    PubMed  CAS  Google Scholar 

  • Poli, G., Albano, E., Dianzani, M.U., Eds. 1993. Free Radicals: From Basic Science to Medicine. Birkhäuser Verlag, Basel, Boston, Berlin.

    Google Scholar 

  • Polle, A., Pfirrman, T., Chakrabarti, S., Rennenberg, H. 1993. The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environm. 16: 311–316.

    Article  CAS  Google Scholar 

  • Price, A., Knight, M., Knight, H., Cuin, T., Tomos, D., Ashenden, T. 1996. Cytosolic calcium and oxidative plant stress. Biochem. Soc. Trans. 24: 479–483.

    PubMed  CAS  Google Scholar 

  • Price, A.H., Atherton, N.M., Hendry, G.A.F. 1989. Plants under drought-stress generate activated oxygen. Free Rad. Res. Comm. 8: 61–66.

    CAS  Google Scholar 

  • Pryor W.A. 1986. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48: 657–667.

    Article  CAS  Google Scholar 

  • Przymusiński R., Rucińska R., Gwóźdź E.A. 1995. The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytosolic Cu,Zn-superoxide dismutase. Env. Exp. Bot. 35: 485–495.

    Article  Google Scholar 

  • Rabinovitch, H.D., Sklan, D. 1981. Superoxide dismutase activity in ripening cucumber and pepper fruit. Physiol. Plant. 52: 380–384.

    Article  Google Scholar 

  • Rabinowitch, H.D., Fridovich, I. 1983. Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37: 679–690.

    CAS  Google Scholar 

  • Rabinowitch, H.D., Sklan, D. 1980. Superoxide dismutase: a possible protective agent against sunscald in tomatoes (Lycopersicon esculentum L.). Planta 148: 162–167.

    Article  CAS  Google Scholar 

  • Redinbaugh, M.G., Sabre, M., Scandalios, J.G. 1990. The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol. 92: 375–380.

    PubMed  CAS  Google Scholar 

  • Rhee, S.G., Chae, H.Z. 1994. Thioredoxin peroxidase and peroxiredoxin family. Mol. Cells 4: 137–142.

    CAS  Google Scholar 

  • Robak, J., Gryglewski, R.J. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837–841.

    Article  PubMed  CAS  Google Scholar 

  • Sabri, N., Pelissier, B., Teissié, J. 1996. Electroperme-abilization of intact maize cells induces an oxidative stress. Eur. J. Biochem. 238: 737–743.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Sakagami, T., Yoshida, H., Omata, T., Shiota, F., Takahashi, H., Kawazoe, Y., Takeda, M. 1995. Hypochlorite scavenging activity of polyphenols. Anticancer Res. 15: 917–922.

    PubMed  CAS  Google Scholar 

  • Scandalios J.G. 1992. Regulation of the antioxidant defense genes Cat and SOD of maize. In: Molecular biology of free radical scavenging systems, ed. by J.G. Scandalios, Cold Spring Harbor Laboratoty Press, Cold Spring Harbor: 117–152.

    Google Scholar 

  • Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12.

    PubMed  CAS  Google Scholar 

  • Schaedle, M., Bassham, J.A. 1977. Chloroplast glutathione reductase. Plant Physiol. 59: 1011–1012.

    PubMed  CAS  Google Scholar 

  • Serbinova, E., Kagan, E., Han, D., Packer, L. 1991. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-to-cotrienol. Free Rad. Biol. Med. 10: 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga, M.K., Aboujaoude, E.N., Chen, Q., Ames, B.N. 1994. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 234: 16–33.

    PubMed  CAS  Google Scholar 

  • Sies H., Ed. 1991. Oxidative Stress-Oxidants and Anti-oxidants. Academic Press, New York.

    Google Scholar 

  • Simontacchi, M., Caro, A., Fraga, C.G., Puntarulo, S. 1993. Oxidative stress affects a-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol. 103: 949–953.

    PubMed  CAS  Google Scholar 

  • Simontacchi, M., Caro, A., Puntarulo, S. 1995. Oxygen-dependent increase of antioxidants in soybean embryonic axes. Int. J. Biochem. Cell Biol. 27: 1221–1229.

    Article  CAS  Google Scholar 

  • Stadtman E.R. 1991. Ascorbic acid and oxidative inactivation of proteins. Am. J. Clin. Nutr. 54: 1125S-1128S.

    PubMed  CAS  Google Scholar 

  • Stadtman E.R. 1992. Protein oxidation and aging. Science 257: 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., Ames, B.N. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Strother S. 1988. The role of free radicals in leaf senescence. Gerontology 34: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Sun, W.Q., Leopold, A.C. 1995. The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol. Plant. 94: 94–104.

    Article  CAS  Google Scholar 

  • Sylvestre, I., Droillard, M.-J., Bureau, J.-M., Paulin, A. 1989. Effects of the ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations. Plant Physiol. Biochem. 27: 407–413.

    CAS  Google Scholar 

  • Tanaka, K., Sugahara, K. 1980. Role of superoxide dismutase in defese against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol. 21: 601–611.

    CAS  Google Scholar 

  • Tepperman, J.M., Dunsmuir, P. 1990. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14: 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J.P., Geiger, P.G., Maiorino, M., Ursini, F., Girotti, A.W. 1990. Enzymatic rduction of phopholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim. Biophys. Acta 1045: 252–260.

    PubMed  CAS  Google Scholar 

  • Thompson, J.E., Legge, R.L., Barber, R.F. 1987. The role of free radicals in senescence and wounding. New Phytol. 105: 317–344.

    Article  CAS  Google Scholar 

  • Wardman, P., Candeias, L.P. 1996. Fenton chemistry: an introduction. Radiat. Res. 145: 525–531.

    Article  Google Scholar 

  • Wilson, D.O., McDonald, M.B. 1986. The lipid peroxidation model of seed aging. Seed Sci. Technol. 14: 269–300.

    CAS  Google Scholar 

  • Wiseman H. 1993. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, Y., Frei, B., Ames, B.N. 1990. Assay of lipid hydroperoxides using HPLC with isoluminol chemiluminescence detection. Methods Enzymol. 186: 371–379.

    PubMed  CAS  Google Scholar 

  • Zenk M.H. 1996. Heavy metal detoxification in higher plants — a review. Gene 179: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Kirkham, M.B. 1994. Drought stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 35: 785–791.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartosz, G. Oxidative stress in plants. Acta Physiol Plant 19, 47–64 (1997). https://doi.org/10.1007/s11738-997-0022-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-997-0022-9

Key words

Navigation