Skip to main content
Log in

Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Tea (Camellia sinensis (L) O. Kuntze) sustainable production is threatened by frequent drought. Tolerance to drought is a complex phenotypic response, which is controlled by the interactive properties of the plant’s genetic makeup, environment and its growing stage. The present investigation aimed to identify the differential responses of antioxidative enzymes, non-enzymatic antioxidants and status of osmolytes in tea plants under water deficit condition with respect to gradually depleting soil moisture content (SMC) and leaf relative water content (RWC). We examined the consequences of water deficit on the physiological characteristics and biochemical compounds of C. sinensis leaves. Our results indicated that the tolerant genotypes maintained favorable water relations, relatively higher photosynthetic pigments and reduced membrane injury by lowering hydrogen peroxide (H2O2) accumulation compared to susceptible cultivars. The relatively lower efficiency of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POX) in susceptible cultivars under subsequent water deficit stress make them more prone to magnified oxidative damage than the tolerant cultivars. Furthermore, a substantial enhancement in the accumulation of osmolytes (proline and glycine betaine) has a great contribution in tolerance during drought. These results provide the insight into the basic mechanisms necessary for induction of antioxidant defense system and accumulation of osmolytes under water deficit conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9:plx009. https://doi.org/10.1093/aobpla/plx009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineux PM (eds) Causes of photooxidative stress and Amelioration of defense system in plants. CRC Press, Boca Raton, FL, pp 77–103

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherly PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bradford MA (1976) A rapid and sensitive method for the quantification of microgram of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brueske CH (1980) Phenyl ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode Meloidogyne incogneta. Physiol Plant Pathol 16:409–414

    Article  CAS  Google Scholar 

  • Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct Plant Biol 35(5):412–426

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty BN, Saha A (1994) Detection and cellular location of cross reactive antigens shared by Camellia sinensis and Bipolaris carbonum. Physiol Mol Plant Pathol 44(6):403–416

    Article  Google Scholar 

  • Cheruiyot EK, Mumera LM, Ng’Etich WK, Hassanali A, Wachira F, (2010) High fertilizer rates increase susceptibility of tea to water stress. J Plant Nutr 33:115–129. https://doi.org/10.1080/01904160903392659

    Article  CAS  Google Scholar 

  • Cia MC, Guimarães ACR, Medici LO, Chabregas SM, Azevedo RA (2012) Antioxidant responses to water deficit by drought-tolerant and sensitive sugarcane varieties. Ann Appl Biol 161:313–324

    Article  CAS  Google Scholar 

  • Coleman WK (2008) Evaluation of wild Solanum species for drought resistance: 1 Solanum gandarillasii Cardenas. Environ Exp Bot 62:221–230. https://doi.org/10.1016/j.envexpbot.2007.08.007

    Article  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Das S, Mondal TK (2012) Identification of deferentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol Rep 30:1088–1101

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 02(53):1–13. https://doi.org/10.3389/fenvs.2014.00053

    Article  CAS  Google Scholar 

  • Devi R, Kaur N, Gupta AK (2012) Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian J Biochem Biophys 49:257–265

    CAS  PubMed  Google Scholar 

  • Dinakar C, Djilianov D, Bartels D (2012) Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci 182:29–41

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Bramlage WJ (1994) Superoxide dismutase activities in senescing apple fruit (Malus domesticva Borkh.). J Food Sci 59(3):581–584

    Article  CAS  Google Scholar 

  • Duan ZQ, Bai L, Zhao ZG, Zhang GP, Cheng FM et al (2009) Drought-stimulated activity of plasma membrane nicotinamide adenine dinucleotide phosphate oxidase and its catalytic properties in rice. J Integr Plant Biol 51:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Durairaj J, Radhakrishnan B, Hudson JB, Muraleedharan N (2015) Guidelines on tea culture in South India, 9th edn. UPASI Tea Research Institute, Valparai

    Google Scholar 

  • Erdal S (2012) Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress. Plant Physiol Biochem 57:1–7

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Genard H, Le Saos J, Hillard J, Tremolieres A, Boucaud J (1991) Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiol Biochem 29:421–427

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zhao S, Zhu C, Chang X, Yue C et al (2017) Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol 17:211. https://doi.org/10.1186/s12870-017-1172-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harb A, Awad D, Samarah N (2015) Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. J Plant Interact 10(1):109–116. https://doi.org/10.1080/17429145.2015.1033023

    Article  CAS  Google Scholar 

  • He F, Sheng M, Tang M (2017) Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Front Plant Sci 8:183. https://doi.org/10.3389/fpls.2017.00183

    Article  PubMed  PubMed Central  Google Scholar 

  • Hochberg U, Degu1 A, Toubiana D, Gendler T, Nikoloski Z, et al. (2013) Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol 13(184): 1–16. Doi: https://doi.org/10.1186/1471-2229-13-184

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98:685–692

    Article  CAS  Google Scholar 

  • Jeyaramraja PR, Manian S, Pius PK (2005a) Alterations in enzyme activities due to drought in pot-grown tea (Camellia spp.) cultivars of Southern India. SLJ Tea Sci 70(1):29–41

    Google Scholar 

  • Jeyaramraja PR, Meenakshi SN, Kumar RS, Joshi SD, Ramasubramanian B (2005b) Water deficit induced oxidative damage in tea (Camellia sinensis) plants. J Plant Physiol 162:413–419

    Article  CAS  Google Scholar 

  • Jeyaramraja PR, Raj Kumar R, Pius PK, Jibu T (2003) Photoassimilatory and photorespiratory behavior of certain drought tolerant and susceptible tea clones. Photosynthetica 41(4):579–583

    Article  CAS  Google Scholar 

  • Jun Y, Zhulong C (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297. https://doi.org/10.1007/s11738-014-1603-z

    Article  CAS  Google Scholar 

  • Keleş Y, Öncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790. https://doi.org/10.1016/S0168-9452(02)00213-3

    Article  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Yi HL (2012) Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Biochem 58:46–53. https://doi.org/10.1016/j.plaphy.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  • Liu SC, Yao MZ, Ma CL, Jin JQ, Ma JQ et al (2015) Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Sci Horticult 184:129–141

    Article  CAS  Google Scholar 

  • Manivel L, Marimuthu S, Venkatesalu V, Raj Kumar R (1994) Effect of potassium nutrition and growth regulators on photosynthesis and assimilate translocation in tea. In: proceedings of the international seminar on integrated crop management in tea: towards higher productivity, Colombo, Sri Lanka, April 26–27. 217–223.

  • Marimuthu S, Raj Kumar R (2001) Physiological and biochemical responses of micropropagated tea plants. In Vitro Cell Dev Biol Plant 37(5):618–621

    Article  CAS  Google Scholar 

  • Matysik J, Ali Bhalu B, Mohanty P (2002) Molecular mechanism of quencling of reactive oxygen species by proline under water stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Maxwell D, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signal required for the induction of gene associated with pathogen attack and senescence. Plant J 29:269–279

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Naderi R, Valizadeh M, Toorchi M, Shakiba MR (2014) Antioxidant enzyme changes in response to osmotic stress in wheat (Triticum aestivum L.) seedling. Acta Biol Szeged 58(2):95–101

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–280

    CAS  Google Scholar 

  • Nalina M, Saroja S, Rajkumar R, Radhakrishnan B, Chandrashekara KN (2018) Variations in quality constituents of green tea leaves in response to drought stress under south Indian condition. Sci Hortic 233:359–369

    Article  Google Scholar 

  • Obidiegwu JE, Bryan GJ, Jones HG, Prashar A (2015a) Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00542

    Article  PubMed  PubMed Central  Google Scholar 

  • Obidiegwu JE, Bryan GJ, Jones HG, Prashar A (2015b) Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci 6:542. https://doi.org/10.3389/fpls.2015.00542

    Article  PubMed  PubMed Central  Google Scholar 

  • Owuor PO, Obanda M (1995) Clonal variation in the individual theaflavins and their impact on astringency and sensory evaluation. Food Chem 54:273–277. https://doi.org/10.1016/0308-8146(95)00046-L

    Article  CAS  Google Scholar 

  • Owuor PO, Obanda M (2007) The use of green tea (Camellia sinensis) leaf flavan-3-ol composition in predicting plain black tea quality potential. Food Chem 100(3):873–884

    Article  CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta SD (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Ratnayaka HH, Molin WT, Sterling TM (2003) Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought. J Exp Bot 54(391):2293–2305. https://doi.org/10.1093/jxb/erg251

    Article  CAS  PubMed  Google Scholar 

  • Raul B, Juan JI, Jesus MS (2006) Short-term drought response of two white clover clones, sensitive and tolerant to O3. Physiol Plantarum 127:658–669

    Article  Google Scholar 

  • Renu KC, Devarshi SS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    Article  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Ind J Exp Biol 32:594–597

    Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidant in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    Article  CAS  Google Scholar 

  • Sanderson GW (1972) The chemistry of tea and tea manufacturing. In: Runeckles VC, Tso TC (eds) Recent advances in phytochemistry, vol 5. Academic Press, New York, pp 247–316

    Google Scholar 

  • Sangwan NS, Ravindranath SD (1997) Seasonal fluctuation in phenolics, and activities of phenylalanine ammonia lyase and tyrosine ammonia lyase in tea clones. J Med Arom Plant Sci 19:1003–1006

    CAS  Google Scholar 

  • Satyanarayana N, Spurgeon C, Sharma VS (1992) Field performance of grafts made on fresh tea clonal cuttings. J Plant Crops 20:151–156

    Google Scholar 

  • Selvaraj Y, Pal DK, Singh R, Roy TK (1995) Biochemistry of uneven ripening in Gulabi Grape. J Food Biochem 18:325–341

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activity of antioxidant enzymes in growing rice seedling. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Sharma RK, Negi MS, Sharma S, Bhardwaj P, Kumar R et al (2010) AFLP-based genetic diversity assessment of commercially important tea germplasm in India. Biochem Genet 48:549–564. https://doi.org/10.1007/s10528-010-9338-z

    Article  CAS  PubMed  Google Scholar 

  • Simova-Stoilova L, Dermirevska K, Petrova T, Tsenov N, Feller U (2009) Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul 58:107–117

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5’- dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Subhash CM (1990) Enzymatic properties association with resistance to rust and powdery mildew in peas. Indian J Hortic 47:341–345

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 2nd edn. Sinauer associates, Sunderland, MA, pp 1–757

    Google Scholar 

  • Torres-Franklin ML, Gigon A, de Melo DF, Zuily-Fodil Y, Pham-Thi AT (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol Plant 131:201–210. https://doi.org/10.1111/j.1399-3054.2007.00943.x

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Panda SK, Dutta BK (2008) Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant 30:457–468

    Article  CAS  Google Scholar 

  • Valifard M, Moradshahi A, Kholdebarin B (2012) Biochemical and physiological responses of two wheat (Triticum aestivum L.) cultivars to drought stress applied at seedling stage. J Agr Sci Tech 14:1567–1578

    CAS  Google Scholar 

  • Vanková R, Dobra J, Storchová H (2012) Recovery from drought stress in tobacco. Plant Signal Behav 7:19–21. https://doi.org/10.4161/psb.7.1.18375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vílchez JI, García-Fontana C, Román-Naranjo D, González-López J, Manzanera M (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577. https://doi.org/10.3389/fmicb.2016.01577

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Xin H, Wang M, Ma Q, Wang L, Kaleri NA, Wang Y, Li X (2016) Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci 7:385. https://doi.org/10.3389/fpls.2016.00385

    Article  PubMed  PubMed Central  Google Scholar 

  • Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiology. Van Nostrand Reinhold Co., New York, NY, pp 55–58

    Google Scholar 

  • Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC et al (2003) Genotypic variation for glycine betaine in sorghum. Crop Sci 43:162–169

    Article  CAS  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38(2):171–186

    Article  CAS  Google Scholar 

  • Zhang J, Cui S, Li J, Kirkham MB (1995) Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiol Biochem 33:567–575

    CAS  Google Scholar 

  • Zhang J, Kirkham MB (1996) Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid, benzoic acid, and propyl gallate. J Plant Physiol 149(5):489–493

    Article  CAS  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D et al (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to water deficit. Hortic Res 1:14029. https://doi.org/10.1038/hortres.2014.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology (DBT). We gratefully acknowledge the DBT for financial support, the Project No. BT/PR14818/NDB/51/217/2010. The Division of Botany is gratefully acknowledged for providing the DUS center to perform the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Chandrashekara.

Additional information

Communicated by L. Bavaresco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalina, M., Saroja, S., Chakravarthi, M. et al. Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition. Acta Physiol Plant 43, 10 (2021). https://doi.org/10.1007/s11738-020-03174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03174-1

Keywords

Navigation