Skip to main content
Log in

Signaling molecule methylglyoxal-induced thermotolerance is partly mediated by hydrogen sulfide in maize (Zea mays L.) seedlings

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG) was traditionally viewed as toxic by-product of glycolysis and photosynthesis in plants, but now is emerging as a signaling molecule, which, similar to hydrogen sulfide (H2S), participates in regulating seed germination, growth, development, and response to abiotic stress. However, whether exists an mutual effect between MG and H2S in improving thermotolerance in plants is not found to be reported. In this paper, interplay between MG and H2S in the formation of thermotolerance in maize seedlings was investigated. The results indicated that MG pretreatment elevated the survival percentage of maize seedlings under high-temperature stress, manifesting that MG could boost the thermotolerance of maize seedlings. Interestingly, MG-induced thermotolerance was reinforced by sodium hydrosulphide (NaHS, H2S donor), while impaired by dl-propargylglycine (inhibitor of H2S biosynthesis) and hypotaurine (scavenger of H2S), respectively. In addition, H2S could induce the thermotolerance of maize seedlings, which was impaired by aminoguanidine (AG) and N-acetyl-l-cysteine (NAC) (MG scavengers), respectively. Furthermore, MG stimulated the activity of a key enzyme in H2S biosynthesis, l-cysteine desulfhydrase, which, in turn, triggered the elevation of endogenous H2S in maize seedlings. In addition, H2S increased the level of endogenous MG; this increase was crippled by AG and NAC. This paper, for the first time, reported that MG could improve the thermotolerance of maize seedlings, and its acquisition was, at least partly, mediated by H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AG:

Aminoguanidine

AGEs:

Advanced glycation end products

AKR:

Aldo–keto reductase

ALD:

Aldehyde dehydrogenase

ALR:

Aldose/aldehyde reductase

BADH:

Betaine aldehyde dehydrogenase

CO:

Carbon monoxide

CS:

Cysteine synthase

DHAP:

Dihydroxyacetone phosphate

DW:

Dry weight

FW:

Fresh weight

Gly I:

Glyoxalase I

Gly II:

Glyoxalase II

Gly III:

Glyoxalase III

G3P:

Glyceraldehyde-3-phosphate

GSH:

Glutathione

HSP:

Heat shock protein

H2S:

Hydrogen sulfide

HT:

Hypotaurine

LCD:

l-Cysteine desulfhydrase

MG:

Methylglyoxal

MGDH:

MG dehydrogenase

MGR:

MG reductase

NAC:

N-Acetyl-l-cysteine

NO:

Nitric oxide

PAG:

dl-Propargylglycine

P5CS:

Δ1-Pyrroline-5-carboxylate synthetase

ROS:

Reactive oxygen species

SA:

Salicylic acid

TPI:

Triosephosphate isomerase

TPP:

Trehalose-6-phosphate phosphatase

References

  • Bless Y, Ndlovu L, Gokul A, Keyster M (2017) Exogenous methylglyoxal alleviates zirconium toxicity in Brassica rapa L. seedling shoots. South Afr J Bot 109:327

    Article  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopouls V (2013) Hydrogen sulfide induces systemic tolerance to salinity and nonionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. J Exp Bot 64:1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christou A, Filippou P, Manganaris GA, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399

    Article  CAS  Google Scholar 

  • Dhar A, Dhar I, Desai KM, Wu L (2010) Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Br J Pharmacol 161:1843–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang T, Cao ZY, Li JL, Shen WB, Huang LQ (2014) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76:44–51

    Article  CAS  PubMed  Google Scholar 

  • Gilbert RP, Brandt RB (1975) Spectrophotometric determination of methyl glyoxal with 2,4-dinitrophenylhydrazine. Anal Chem 47:2418–2422

    Article  CAS  PubMed  Google Scholar 

  • Hancock JT (2017) Harnessing evolutionary toxins for signaling: reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation. Front Plant Sci 8:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock JT, Whiteman M (2016) Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann N Yk Acad Sci 1365:5–14

    Article  CAS  Google Scholar 

  • Hemmati H, Gupta D, Basu C (2015) Molecular physiology of heat stress responses in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives. Springer, New York, pp 109–142

    Chapter  Google Scholar 

  • Holdorf MM, Owen HA, Rhee Lieber S, Yuan L, Adams N, Dabney-Smith C, Makaroff CA (2012) Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development. Plant Physiol 160:226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T, Hoque MA, Nakamura Y, Murata Y (2012a) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Tuya A, Nakamura Y, Murata Y (2012b) Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol 14:854–858

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, Murata Y (2012c) Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol 169:979–986

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M (2016a) Signalling roles of methylglyoxal and the involvement of the glyoxalase system in plant abiotic stress responses and tolerance. In: Azooz MM, Ahmad P (eds) Plant–environment interaction: responses and approaches to mitigate stress. Wiley, Chichester, pp 311–326

    Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP (2016b) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73:2007–2013

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Burritt DJ, Fujita M (2016) Proline and glycine betaine modulate cadmium-induced oxidative stress tolerance in plants: Possible biochemical and molecular mechanisms. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: responses and approaches to mitigate stress. Wiley, Chichester, pp 97–123

    Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014a) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Mustafiz A, Sarkar AK, Ariyadasa TU, Singla-Pareek SL, Sopory SK (2014b) Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol Plant 152:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Singla-Pareek SL, Sopory SK (2014c) Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance. Crit Rev Plant Sci 33:429–456

    Article  CAS  Google Scholar 

  • Kaur C, Sharma S, Singla-Pareek SL, Sopory SK (2015) Methylglyoxal, triose phosphate isomerase, and glyoxalase pathway: implications in abiotic stress and signaling in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, Berlin, pp 347–365

    Chapter  Google Scholar 

  • Leipner J, Stamp P (2009) Chilling stress in maize seedlings. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, Berlin, pp 291–344

    Chapter  Google Scholar 

  • Li ZG (2013) Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ J Plant Physiol 60:733–740

    Article  CAS  Google Scholar 

  • Li ZG (2015a) Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. Methods Enzymol 555:253–269

    Article  CAS  PubMed  Google Scholar 

  • Li ZG (2015b) Quantification of hydrogen sulfide concentration using methylene blue and 5,5′-dithiobis (2-nitrobenzoic acid) methods in plants. Methods Enzymol 554:101–110

    Article  CAS  PubMed  Google Scholar 

  • Li ZG (2016) Methylglyoxal and glyoxalase system in plants: old players, new concepts. Bot Rev 82:183–203

    Article  Google Scholar 

  • Li ZG, Gu SP (2016) Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension. Biol Plant 60:595–600

    Article  CAS  Google Scholar 

  • Li ZG, He QQ (2015) Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean (Vigna radiata). Biologia 70:753–759

    CAS  Google Scholar 

  • Li ZG, Jin JZ (2016) Hydrogen sulfide partly mediates abscisic acid-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells. Plant Cell Tissue Organ Cult 125:207–214

    Article  CAS  Google Scholar 

  • Li ZG, Zhu LP (2015) Hydrogen sulfide donor sodium hydrosulfide-induced accumulation of betaine is involved in the acquisition of heat tolerance in maize seedlings. Braz J Bot 38:31–38

    Article  CAS  Google Scholar 

  • Li ZG, Gong M, Liu P (2012a) Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas. Acta Physiol Plant 34:2207–2213

    Article  CAS  Google Scholar 

  • Li ZG, Gong M, Xie H, Yang L, Li J (2012b) Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci 185(186):185–189

    Article  PubMed  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013a) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:41–747

    Article  Google Scholar 

  • Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013b) Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36:564–1572

    Google Scholar 

  • Li ZG, Luo LJ, Zhu LP (2014a) Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot Stud 55:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Yi XY, Li YT (2014b) Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia 69:1001–1009

    CAS  Google Scholar 

  • Li YJ, Chen J, Xian M, Zhou LG, Han FX, Gan LJ, Shi ZQ (2014c) In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation. PLoS One 9:e90340

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Xie LR, Li XJ (2015) Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol 177:121–127

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621

    PubMed  PubMed Central  Google Scholar 

  • Li ZG, Duan XQ, Min X, Zhou H (2017a) Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. Protoplasma 254:1995–2006

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Duan XQ, Xia YM, Wang Y, Zhou ZH, Min X (2017b) Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L). Plant Cell Rep 36:367–370

    Article  PubMed  Google Scholar 

  • Li ZG, Nie Q, Yang CL, Wang Y, Zhou ZH (2018) Signaling molecule methylglyoxal ameliorates cadmium injury in wheat (Triticum aestivum L) by a coordinated induction of glutathione pool and glyoxalase system. Ecotoxicol Environ Saf 149:101–107

    Article  CAS  PubMed  Google Scholar 

  • Lin YT, Li MY, Cui WT, Lu W, Shen WB (2012) Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. J Plant Growth Regul 31:519–528

    Article  CAS  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Yang L, Zhao J, Wei J, Kong X, Wang C, Zhang XM, Yang YP, Hu XY (2015) Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotate to altitude gradient in the Northern Tibetan Plateau. Planta 241:887–906

    Article  CAS  PubMed  Google Scholar 

  • Mankikar S, Rangnekar P (1974) Effects of methylglyoxal on germination of barley. Phyton 32:9–16

    CAS  Google Scholar 

  • Matafome P, Rodrigues T, Sena C, Seica R (2017) Methylglyoxal in metabolic disorders: facts, myths, and promises. Med Res Rev 37:368–403

    Article  PubMed  Google Scholar 

  • Ray A, Ray S, Mukhopadhyay S, Ray M (2013) Methylglyoxal with glycine or succinate enhances differentiation and shoot morphogenesis in Nicotiana tabacum callus. Biol Plant 57:19–223

    Article  Google Scholar 

  • Roy K, De S, Ray M, Ray S (2004) Methylglyoxal can completely replace the requirement of kinetin to induce differentiation of plantlets from some plant calluses. Plant Growth Regul 44:33–45

    Article  CAS  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA (2017) Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci 18:898

    Article  PubMed Central  Google Scholar 

  • Strable J, Scanlon MJ (2009) Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harb Protoc 10:pdb.emo132

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2015a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophy Res Commun 337:61–67

    Article  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2015b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY (2009) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51:1086–1094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (31760069, 31360057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Guang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Baczek-Kwinta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZG., Long, WB., Yang, SZ. et al. Signaling molecule methylglyoxal-induced thermotolerance is partly mediated by hydrogen sulfide in maize (Zea mays L.) seedlings. Acta Physiol Plant 40, 76 (2018). https://doi.org/10.1007/s11738-018-2653-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2653-4

Keywords

Navigation