Skip to main content
Log in

High day–night transition temperature alters nocturnal starch metabolism in rice (Oryza sativa L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Transitory starch plays a vital role in maintenance respiration as its degradation products provide substrate for the night respiration. A study was conducted with two contrasting rice cultivars: Vandana (high night temperature susceptible) and Nagina 22 (high night temperature tolerant) by subjecting them to increase in transition temperature from anthesis to physiological maturity. Night respiration on plant area basis increased by 35% in Vandana at 5 days after anthesis but was unaffected in tolerant cultivar. A simultaneous 18% decrease in starch content was observed in the susceptible cultivar. An analysis of the starch-metabolizing enzymes showed that activity of β-amylase increased markedly in Vandana whereas both β and α-amylase decreased in Nagina 22 following high day to night transition temperature exposure. The level of starch breakdown product, maltose, increased in the susceptible cultivar but glucose levels declined in both the cultivars. Concurrently, expression of chloroplastic isoforms α-amylase OsAMY1, OsAMY2 and β-amylase OsBAM2 increased in Vandana. A lower accumulation of dry matter was recorded in the susceptible than the tolerant cultivar. Our study elucidated the regulatory role of transitory starch in supporting the high day to night transition temperature-induced night-time respiration which is mediated by the increased activity of β-amylase through enhanced expression of OsBAM2 in flag leaves of susceptible cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T (2005) Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869. doi:10.1093/pcp/pci091

    Article  CAS  PubMed  Google Scholar 

  • Azcon-Bieto J, Osmond CB (1983) Relationship between photosynthesis and respiration the effect of carbohydrate status on the rate of CO2 production by respiration in darkened and illuminated wheat leaves. Plant Physiol 71:574–581. doi:10.1104/pp.71.3.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahuguna RN, Solis CA, Shi W, Jagadish KS (2016) Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiol Plant. doi:10.1111/ppl.12485

    PubMed  Google Scholar 

  • Cheng W, Sakai H, Yagi K, Hasegawa T (2009) Interactions of elevated [CO2] and night temperature on rice growth and yield. Agric Forest Meteorol 149:51–58. doi:10.1016/j.agrformet.2008.07.006

    Article  Google Scholar 

  • Cheng W, Sakai H, Yagi K, Hasegawa T (2010) Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agric Forest Meteorol 150:1174–1181. doi:10.1016/j.agrformet.2010.05.001

    Article  Google Scholar 

  • Coast O, Ellis RH, Murdoch AJ, Quinones C, Jagadish KS (2015) High night temperature induces contrasting responses for spikelet fertility, spikelet tissue temperature, flowering characteristics and grain quality in rice. Funct Plant Biol 42:149–161. doi:10.1071/fp14104

    Article  CAS  Google Scholar 

  • Davy R, Esau I, Chernokulsky A, Outten S, Zilitinkevich S (2016) Diurnal asymmetry to the observed global warming. Int J Climatol. doi:10.1002/joc.4688

    Google Scholar 

  • Frantz JM, Cometti NN, Bugbee B (2004) Night temperature has a minimal effect on respiration and growth in rapidly growing plants. Ann Bot 94:155–166. doi:10.1093/aob/mch122

    Article  PubMed  PubMed Central  Google Scholar 

  • Glaubitz U, Erban A, Kopka J, Hincha DK, Zuther E (2015) High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. J Exp Bot 66:6385–6397. doi:10.1093/jxb/erv352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci 16:169–175. doi:10.1016/j.tplants.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  • Gulles AA, Bartolome VI, Morantte RIZA, Nora LA, Relente CEN, Talay DT, Caneda AA, Ye G (2014) Randomization and analysis of data using STAR (Statistical Tool for Agricultural Research). Philipp J Crop Sci 39:137

    Google Scholar 

  • Hirano T, Takahashi Y, Fukayama H, Michiyama H (2011) Identification of two plastid-targeted β-amylases in rice. Plant Prod Sci 14:318–324. doi:10.1626/pps.14.318

    Article  CAS  Google Scholar 

  • Hodge JE, Hofreiter BT (1962) Determination of reducing sugars and carbohydrates. In: Whistler RL, Be Miller JN (eds) Methods in carbohydrate chemistry. Academic Press, New York

    Google Scholar 

  • Indian Network on Climate Change Assessment (2010) Climate change and India: a 4 × 4 assessment. Ministry of Environment and Forests, Government of India, New Delhi

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Summary for policy makers Working group I contribution to the IPCC fifth assessment report. Cambridge University Press, Cambridge, pp 1–33

    Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) High temperature stress and spikelet fertility in rice (Oryza sativa L.). Trends Plant Sci 58:1627–1635. doi:10.1093/jxb/erm003

    Google Scholar 

  • Kanno K, Mae T, Makino A (2009) High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Sci Plant Nutr 55:124–131. doi:10.1111/j.1747-0765.2008.00343.x

    Article  CAS  Google Scholar 

  • Karkacier M, Erbas M, Uslu MK, Aksu M (2003) Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J Chromatogr Sci 41:331–333. doi:10.1093/chromsci/41.6.331

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137. doi:10.1016/j.tplants.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  • Loka DA, Oosterhuis DM (2010) Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environ Exp Bot 68:258–263. doi:10.1016/j.envexpbot.2010.01.006

    Article  CAS  Google Scholar 

  • Mitsui T, Itoh K (1997) The α-amylase multigene family. Trends Plant Sci 2:255–261. doi:10.1016/s1360-1385(97)86347-9

    Article  Google Scholar 

  • Mohammed AR, Tarpley L (2009) High night time temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric Forest Meteorol 149:999–1008. doi:10.1016/j.agrformet.2008.12.003

    Article  Google Scholar 

  • Mohammed AR, Tarpley L (2010) Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur J Agron 33:117–123. doi:10.1016/j.eja.2009.11.006

    Article  Google Scholar 

  • Mohammed AR, Tarpley L (2014) Differential response of two important Southern US rice (Oryza sativa L.) to high night temperature. Aust J Crop Sci 8:191

    Google Scholar 

  • Morita S, Yonemaru JI, Takanashi JI (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95:695–701. doi:10.1093/aob/mci071

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagarajan S, Jagadish KS, Prasad AH, Tomar AK, Anand A, Pal M, Aggarwal PK (2010) Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agric Ecosyst Environ 138:274–281. doi:10.1016/j.agee.2010.05.012

    Article  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975. doi:10.1073/pnas.0403720101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peraudeau S, Lafarge T, Roques S, Quiñones CO, Clement-Vidal A, Ouwerkerk PB, Van Rie J, Fabre D, Jagadish KSV, Dingkuhn M (2015a) Effect of carbohydrates and night temperature on night respiration in rice. J Exp Bot 66:3931–3944. doi:10.1093/jxb/erv193

    Article  CAS  PubMed  Google Scholar 

  • Peraudeau S, Roques S, Quiñones CO, Fabre D, Van Rie J, Ouwerkerk PB, Lafarge T (2015b) Increase in night temperature in rice enhances respiration rate without significant impact on biomass accumulation. Field Crops Res 171:67–78. doi:10.1016/j.fcr.2014.11.004

    Article  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:595–607. doi:10.1071/pp99173

    Article  CAS  Google Scholar 

  • Shi W, Muthurajan R, Rahman H, Selvam J, Peng S, Zou Y, Jagadish KS (2013) Source–sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol 197:825–837. doi:10.1111/nph.12088

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Yin X, Struik PC, Xie F, Schmidt RC, Jagadish KS (2016) Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crops Res 190:18–25. doi:10.1016/j.fcr.2015.10.006

    Article  Google Scholar 

  • Stanley D, Farnden KJ, Macrae EA (2005) Plant α-amylases: functions and roles in carbohydrate metabolism. Biologia (Bratisl) 60:65–71

    CAS  Google Scholar 

  • Stitt M, Gibon Y, Lunn JE, Piques M (2007) Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Funct Plant Biol 34:526–549. doi:10.1071/fp06249

    Article  CAS  Google Scholar 

  • Sugimura Y, Michiyama H, Hirano T (2015) Involvement of α-amylase genes in starch degradation in rice leaf sheaths at the post-heading stage. Plant Prod Sci 18:277–283. doi:10.1626/pps.18.277

    Article  CAS  Google Scholar 

  • Sun Z, Henson CA (1991) A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch Biochem Biophys 284:298–305. doi:10.1016/0003-9861(91)90299-x

    Article  CAS  PubMed  Google Scholar 

  • Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant, Cell Environ 25:1729–1737. doi:10.1046/j.1365-3040.2002.00947.x

    Article  CAS  Google Scholar 

  • Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, Hebbeker U, Flugge UI (2000) Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell 12:787–801. doi:10.2307/3871001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise SE, Weber AP, Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482. doi:10.1007/s00425-003-1128-y

    Article  CAS  PubMed  Google Scholar 

  • Yu TS, Zeeman SC, Thorneycroft D, Fulton DC, Dunstan H, Lue WL, Hegemann B, Tung SY, Umemoto T, Chapple A, Tsai DL, Wang SM, Smith AM, Chen J, Smith SM (2005) α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem 280:9773–9779. doi:10.1074/jbc.m413638200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NS was supported with fellowship granted by Indian Council of Agricultural Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Anand.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Communicated by B Zheng.

N. Sharma and A. Yadav contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Yadav, A., Khetarpal, S. et al. High day–night transition temperature alters nocturnal starch metabolism in rice (Oryza sativa L.). Acta Physiol Plant 39, 74 (2017). https://doi.org/10.1007/s11738-017-2370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2370-4

Keywords

Navigation