Skip to main content
Log in

Post-harvest banana peel splitting as a function of relative humidity storage conditions

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Peel splitting is a major physiological disorder affecting post-harvest banana quality. This phenomenon occurs only 3–6 days after ripening induction in specific cultivars such as cv. 925 when stored in saturating humidity conditions. In these conditions, Cavendish cultivars (Grande Naine, cv. GN) are not susceptible to splitting. Cvs. 925 and GN were thus investigated to detect possible determinants associated with splitting. Splitting intensity was tentatively found to be associated with an inverse water flux at high relative humidity (RH) through an osmotic peel to pulp water flux resulting from the higher sugar content in the pulp than in the peel. Rheological properties were measured, and although the peel resistance and elasticity in cv. 925 were surprisingly higher than in cv. GN, saturating humidity conditions (100 % RH) substantially reduced the peel resistance. However, the peel epicuticular wax in cv. 925 was clearly thinner than that in cv. GN, thus leading to limitation of peel hydration in cv. GN. Peel splitting in cv. 925 was also associated with a boost in respiration, an increase in oxidative stress markers (H2O2), resulting in an increase in cellular damage markers (MDA, PEL). Overall, our results suggest that peel splitting at high RH in cv. 925 is related to fast decrease peel water content and the induction of high oxidative stress damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Banks NH (1984a) Some effects of TAL pro-long coating on ripening bananas. J Exp Bot 35:127–137. doi:10.1093/jxb/35.1.127

    Article  CAS  Google Scholar 

  • Banks NH (1984b) Studies of the banana fruit surface in relation to the effects of TAL Pro-long coating on gaseous exchange. Sci Hortic 24:279–286. doi:10.1016/0304-4238(84)90112-2

    Article  Google Scholar 

  • Bargel H, Neinhuis C (2005) Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J Exp Bot 56:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans Review No. 3: Structure–function relationships of the plant cuticle and cuticular waxes—a smart material? Funct Plant Biol 33:893–910

    Article  CAS  Google Scholar 

  • Bugaud C, Chillet M, Beauté MP, Dubois C (2006) Physicochemical analysis of mountain bananas from the French West Indies. Sci Hortic 108:167–172. doi:10.1016/j.scienta.2006.01.024

    Article  CAS  Google Scholar 

  • Bugaud C, Ocrisse G, Salmon F, Rinaldo D (2014) Bruise susceptibility of banana peel in relation to genotype and post-climacteric storage conditions. Postharvest Biol Technol 87:113–119. doi:10.1016/j.postharvbio.2013.08.009

    Article  Google Scholar 

  • Burdon J, Moore K, Wainwright H (1993) The peel of plantain and cooking banana fruits. Ann Appl Biol 123:391–402

    Article  Google Scholar 

  • Burdon J, Dori S, Lomaniec E, Marinansky R, Pesis E (1994) The post-harvest ripening of water stressed banana fruits. J Hortic Sci 69:799–804

    Article  Google Scholar 

  • Cheng G, Duan X, Yang B, Jiang Y, Lu W, Luo Y, Jiang W (2008) Effect of hydroxyl radical on the scission of cellular wall polysaccharides in vitro of banana fruit at various ripening stages. Acta Physiol Plant 30:257–263. doi:10.1007/s11738-007-0116-4

    Article  CAS  Google Scholar 

  • Chillet M, de Lapeyre de Bellaire J, Hubert O (2008) Measurement of banana green life. Fruits 63:125–127

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dumville J, Fry S (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961. doi:10.1007/s00425-003-1061-0

    Article  CAS  PubMed  Google Scholar 

  • Fernandes K, Carvalho VD, Cal-Vidal J (1979) Physical changes during ripening of silver bananas. J Food Sci 44:1254–1255

    Article  CAS  Google Scholar 

  • Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67. doi:10.1023/a:1021140022082

    Article  CAS  Google Scholar 

  • Ganry J, Meyer J (1975) Recherche d’une loi d’action de la temperature sur la croissance des fruits du bananier. Fruits 30(6):375–392

    Google Scholar 

  • Gibert C, Chadoeuf J, Nicot P, Vercambre G, Génard M, Lescourret F (2009) Modelling the effect of cuticular crack surface area and inoculum density on the probability of nectarine fruit infection by Monilinia laxa. Plant Pathol 58:1021–1031

    Article  Google Scholar 

  • Happi Emaga T, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 103:590–600. doi:10.1016/j.foodchem.2006.09.006

    Article  CAS  Google Scholar 

  • Huang H, Gao F, Huang X, Wang H, Li J (2000) An overview of litchi fruit cracking. In: I International Symposium on Litchi and Longan 558, pp 205–208

  • Jiang Y, Joyce D, Jiang W, Lu W (2004) Effects of chilling temperatures on ethylene binding by banana fruit. Plant Growth Regul 43:109–115. doi:10.1023/B:GROW.0000040112.19837.5f

    Article  CAS  Google Scholar 

  • Johnson BE, Brun W (1966) Stomatal density and responsiveness of banana fruit stomates. Plant Physiol 41:99–101. doi:10.1104/pp.41.1.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallarackal J, Milburn J, Baker D (1990) Water relations of the banana. III. Effects of controlled water stress on water potential, transpiration, photosynthesis and leaf growth. Funct Plant Biol 17:79–90

    Google Scholar 

  • Kampfenkel K, Vanmontagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167

    Article  CAS  PubMed  Google Scholar 

  • Khadivi-Khub A (2015) Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant 37:1–14

    Article  Google Scholar 

  • Knoche M, Peschel S (2006) Water on the surface aggravates microscopic cracking of the sweet cherry fruit cuticle. J Am Soc Hortic Sci 131:192–200

    Google Scholar 

  • Knoche M, Peschel S, Hinz M, Bukovac MJ (2000) Studies on water transport through the sweet cherry fruit surface: characterizing conductance of the cuticular membrane using pericarp segments. Planta 212:127–135. doi:10.1007/s004250000404

    Article  CAS  PubMed  Google Scholar 

  • Konarska A (2013) The structure of the fruit peel in two varieties of Malus domestica Borkh. (Rosaceae) before and after storage. Protoplasma 250:701–714

    Article  CAS  PubMed  Google Scholar 

  • Korbel E et al (2013) Impact of temperature and water activity on enzymatic and non-enzymatic reactions in reconstituted dried mango model system. Eur Food Res Technol 237:39–46

    Article  CAS  Google Scholar 

  • Lara I, Belge B, Goulao LF (2014) The fruit cuticle as a modulator of postharvest quality. Postharvest Biol Technol 87:103–112

    Article  CAS  Google Scholar 

  • Léchaudel M, Lopez-Lauri F, Vidal V, Sallanon H, Joas J (2013) Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment. J Plant Physiol 170:567–576. doi:10.1016/j.jplph.2012.11.009

    Article  PubMed  Google Scholar 

  • Loesecke HOW (1950) Chemical changes during ripening Bananas—chemistry, physiology and technology. New York

  • Marshall DA, Spiers JM, Curry KJ (2009) Water uptake threshold of Rabbiteye (Vaccinium ashei) blueberries and its influence on fruit splitting. Hortscience 44:2035–2037

    Google Scholar 

  • Martin LB, Rose JK (2014) There’s more than one way to skin a fruit: formation and functions of fruit cuticles. J Exp Bot 65:4639–4651

    Article  PubMed  Google Scholar 

  • Matas AJ, Cobb ED, Paolillo DJ, Niklas KJ (2004) Crack resistance in cherry tomato fruit correlates with cuticular membrane thickness. Hortscience 39:1354–1358

    Google Scholar 

  • Opara LU, Studman CJ, Banks NH (1997) Sunlight affects the incidence of internal ring cracking and other physical attributes of ‘Gala’apples. J Tree Fruit Prod 2:45–52

    Article  Google Scholar 

  • Opara L, Hodson A, Studman C (2000) Stem-end splitting and internal ring-cracking of ‘Gala’apples as influenced by orchard management practices. J Hortic Sci Biotechnol 75:465–469

    Article  Google Scholar 

  • Paull RE (1996) Ethylene, storage and ripening temperatures affect Dwarf Brazilian banana finger drop. Postharvest Biol Technol 8:65–74. doi:10.1016/0925-5214(95)00058-5

    Article  Google Scholar 

  • Peet M (1992) Fruit cracking in tomato. Horttechnology 2:216–223

    Google Scholar 

  • Peet MM, Willits DH (1995) Role of excess water in tomato fruit cracking. Hortscience 30:65–68

    Google Scholar 

  • Peschel S, Franke R, Schreiber L, Knoche M (2007) Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 68:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Petracek PD, Bukovac MJ (1995) Rheological properties of enzymatically isolated tomato fruit cuticle. Plant Physiol 109:675–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweikert C, Liszkay A, Schopfer P (2000) Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry 53:565–570. doi:10.1016/S0031-9422(99)00586-5

    Article  CAS  PubMed  Google Scholar 

  • Sekse L (1995) Fruit cracking in sweet cherries (Prunus avium L.). Some physiological aspects—a mini review. Sci Hortic 63:135–141

    Article  Google Scholar 

  • Ullah H, Ahmad S, Anwar R, Thompson A (2006) Effect of high humidity and water on storage life and quality of bananas. Int J Agric Biol 8:828–831

    Google Scholar 

  • Vandenhout H, Ortiz R, Vuylsteke D, Swennen R, Bai K (1995) Effect of ploidy on stomatal and other quantitative traits in plantain and banana hybrids. Euphytica 83:117–122

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Vicente AR, Martínez GA, Chaves AR, Civello PM (2006) Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol Technol 40:116–122

    Article  CAS  Google Scholar 

  • Wade NL, Kavanagh EE, Hockley DG, Brady CJ (1992) Relationship between softening and the polyuronides in ripening banana fruit. J Sci Food Agric 60:61–68. doi:10.1002/jsfa.2740600111

    Article  CAS  Google Scholar 

  • Williams MH, Vesk M, Mullins MG (1989) Characteristics of the surface of banana peel in cultivars susceptible and resistant to maturity bronzing. Can J Bot 67:2154–2160. doi:10.1139/b89-273

    Article  Google Scholar 

  • Zhou Q, Ma C, Cheng S, Wei B, Liu X, Ji S (2014) Changes in antioxidative metabolism accompanying pitting development in stored blueberry fruit. Postharvest Biol Technol 88:88–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to J.P. Fleuriot (CIRAD, UMR QualiSud) for designing and building the specific texture analyzer probe for mimicking peel volume extension.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Brat.

Additional information

Communicated by P. K. Nagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brat, P., Lechaudel, M., Segret, L. et al. Post-harvest banana peel splitting as a function of relative humidity storage conditions. Acta Physiol Plant 38, 234 (2016). https://doi.org/10.1007/s11738-016-2253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2253-0

Keywords

Navigation