Skip to main content
Log in

High-efficient Agrobacterium-mediated in planta transformation in black gram (Vigna mungo (L.) Hepper)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In vitro culture and genetic transformation of black gram are difficult due to its recalcitrant nature. Establishment of gene transfer procedure is a prerequisite to develop transgenic plants of black gram in a shorter period. Therefore, genetic transformation was performed to optimize the factors influencing transformation efficiency through Agrobacterium tumefaciens-mediated in planta transformation using EHA 105 strain harbouring reporter gene, bar, and selectable marker, gfp-gus, in sprouted half-seed explants of black gram. Several parameters, such as co-cultivation, acetosyringone concentration, exposure time to sonication, and vacuum infiltration influencing in planta transformation, have been evaluated in this study. The half-seed explants when sonicated for 3 min and vacuum infiltered for 2 min at 100 mm of Hg in the presence of A. tumefaciens (pCAMBIA1304 bar) suspensions and incubated for 3 days co-cultivation in MS medium with 100 µM acetosyringone showed maximum transformation efficiency (46 %). The putative transformants were selected by inoculating co-cultivated seeds in BASTA® (4 mg l−1) containing MS medium followed by BASTA® foliar spray on 15-day-old black gram plants (35 mg l−1) in green house, and the transgene integration was confirmed by biochemical assay (GUS), Polymerase chain reaction, Dot-blot, and Southern hybridisation analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bar :

Bialaphos resistant gene

CaMV35S:

Cauliflower Mosaic Virus 35S

GUS:

β-Glucuronidase

MIC:

Minimum inhibitory concentration

MS:

Murashige and Skoog medium

PPT:

Phosphinothricin

YEP:

Yeast extract and peptone

References

  • Adesoye AI, Togun AO, Machuka J (2010) Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. J Appl Biosci 30:1845–1860

    Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jaca L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. Progress in Botany, vol 74. Springer-Verlag, Berlin Heidelberg, pp 37–100

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30(12):2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Bhalla-Sarin N, Bhomkar P, Debroy S, Sharma N, Saxena M, Upadhyaya CP, Muthusamy A, Pooggin M, Hohn T (2004) Transformation of Vigna mungo (black gram) for abiotic stress tolerance using marker-free approach. New Directions for a Diverse Planet: Proceedings of the 4th International Crop Congress Brisbane, Australia, Oct, pp 454

  • Bhargava SC, Smigocki AC (1994) Transformation of tropical grain legumes using particle bombardment. Curr Sci 66:439–442

    Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Prakash NS, Pooggin M, Hohn T, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (black gram) by over expression of the glyoxalase 1 gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22:169–181

    Article  CAS  Google Scholar 

  • Chaudhary D, Madanpotra S, Jaiwal R, Saini A, Kumar P, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L.Walp) cultivar and transmission of transgene into progeny. Plant Sci 172:692–700

    Article  Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhikara S, Chaudhary D, Yadav M, Sainger M, Pawan K, Jaiwal (2011) A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 48:7–14

    Article  Google Scholar 

  • Chopra R, Saini R (2014) Transformation of black gram (Vigna mungo (L.) Hepper) by Barley Chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl Biochem Biotechnol 174:2791–2800

    Article  CAS  PubMed  Google Scholar 

  • D halluin K, de Block M, Denecke J, Janssens J, Leemans J, Reynaerts A, Botterman J (1992) The bar gene as selectable and screenable marker in plant engineering. Methods Enzymol 216:415–426

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395

    Article  CAS  PubMed  Google Scholar 

  • Droste A, Pasquali G, Bodanese-Zanettini MH (2000) Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep 18(1):51–59

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of genomic plant DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Grabowska A, Filipecki M (2004) Infiltration with Agrobacterium-the method for stable transformation avoiding tissue culture. Acta Physiol Plant 26(4):451–458. http://agricoop.nic.in/

  • Hu CY and Wang L (1999) In planta transformation technologies developed in China: procedure, confirmation and field performance. In vitro Cell Dev Biol Plant l35:417–420

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated gene transfer in mungbean—a recalcitrant grain legume. Plant Sci 161:239–247

    Article  CAS  PubMed  Google Scholar 

  • Jeswani LM, Baldev B (1990) Advances in pulse production technology (eds) Publication and Information Division, Indian Council of Agricultural Research, New Delhi

  • Joersbo M, Brunstedt J (1992) Sonication: a new method for gene transfer to plants. Physiol Plant 85:230–234

    Article  CAS  Google Scholar 

  • Keshamma E, Rohini S, Rao K. S., Madhusudhan B, and Udaya Kumar M (2008) Tissue culture-independent in Planta transformation strategy an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in Cotton (Gossypium hirsutum L.) J Cotton Sci 12:264–272

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of Indica rice. Plant Cell Rep 28:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197

    Article  CAS  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamontova EM, Velikov VA, Volokhina IV, Chumakov MI (2010) Agrobacterium-mediated in planta transformation of maize germ cells. Russ J Genet 46:501–504

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated inplanta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T, Amedeo P, Paszkowski J (1997) High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 19 promoter. Plant J 12:945–948

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muruganantham M, Amutha S, Selvaraj N, Vengadesan G, Ganapathi A (2007) Efficient Agrobacterium-mediated transformation of V. mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent. In vitro Cell Dev Biol Plant 43:550–557

    Article  CAS  Google Scholar 

  • Park BJ, Liu Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication vacuum infiltration of germinated seeds with harbouring a group 3LE A gene from B. napus. Plant Cell Rep 24:494–500

    Article  CAS  PubMed  Google Scholar 

  • Popelka C, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  CAS  PubMed  Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp.chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    Article  CAS  Google Scholar 

  • Reddy S (2007) In planta transformation studies in Chick pea (M.Sc thesis).Department of Genetics and Plant Breeding (Department) University of Agriculture Sciences, Dharwad (Institute) AC, Karnataka State

  • Rohini VK, Rao K (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Sainger M, Chaudhary D, Dahiya S, Jaiwal R, Jaiwal PK (2015) Development of an efficient invitro plant regeneration system amenable to Agrobacterium-mediated transformation of a recalcitrant grain legume black gram (Vigna mungo L. Hepper). Physiol Mol Biol Plants doi:10.1007/s12298-015-0315-1

  • Saini R, Jaiwal PK (2002) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium- mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171

    Article  Google Scholar 

  • Saini R, Jaiwal PK (2005) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium-mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transformation of black gram: an assessment of factors influencing the efficiency of uidA gene transfer. Biol Plant 51:69–74

    Article  CAS  Google Scholar 

  • Saini R, Makani S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory, Cole Spring Harbor, New York

    Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Savitha (2011) RNA interference for generation of transgenic black gram (vigna mungo (L.) Hepper) plants resistant to yellow mosaic disease. Ph.D thesis, Centre for Biotechnology, Maharshi Dayanand University Rohtak, Haryana

  • Sivanandhan G, Kapildev G, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M (2015) Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS One 10(4):e0124693. doi:10.1371/journal.pone.0124693

    Article  PubMed  PubMed Central  Google Scholar 

  • Solis JIF, Mlejnek P, Studena K, Prochazka S (2003) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant, Soil Environ 49:255–260

    Article  CAS  Google Scholar 

  • Sonia Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    Article  CAS  PubMed  Google Scholar 

  • Sreeramanan S, Maziah M, Abdullah MP, Rosli N, Xavier R (2006) Potential selectable marker for genetic transformation in banana. Biotechnology 5:189–197

    Article  Google Scholar 

  • Subramanyam K, Rajesh M, Jaganath B, Vasuki A, Theboral J, Elayaraja D, Karthik S, Manickavasagam M, Ganapathi A (2013) Assessment of factors influencing the Agrobacterium-mediated inplanta seed transformation of brinjal (Solanum melongena L.). Appl Biochem Biotechnol 171(2):450–468

    Article  CAS  PubMed  Google Scholar 

  • Supartana P, Shimizi Y, Shioiri H, Nagawa M, Nozue M, Koijima M, Nakajima T, Haramoto N (2006) Development of a simple and efficient method for transformation of wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102:162–170

    Article  CAS  PubMed  Google Scholar 

  • Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223

    PubMed  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    Article  CAS  PubMed  Google Scholar 

  • Varalaxmi Y, Prasanna A, Sushil K. Yadav, Venkateswarlu B and Maheswari M (2013) Optimization of parameters for Agrobacterium-mediated transformation of black gram (Vigna mungo L. Hepper) using cotyledon explants. Afr J Biotechnol 12(11):1209–1215

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    Article  CAS  Google Scholar 

  • Yamada T, Teraishi M, Hattori K, Ishimoto M (2001) Transformation of azuki bean by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 64:47–54

    Article  CAS  Google Scholar 

  • Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudhry MF (2009) Inplanta transformation of tomato. Plant Mol Biol Rep 27(1):20–28

    Article  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Prof. A. Ganapathi is thankful to the University Grants Commission (UGC), Government of India, for the award of UGC–Emeritus Fellowship scheme (No.F.6-6/2014-15/EMERITUS-2014-15-OBC-3703/(SA-II)). The first author is thankful to University Grants Commission (UGC), Government of India for the award of Project Fellow. V. Vasudevan acknowledges BharathidasanUniversity, Tiruchirappalli, for the award of the University Research Fellowship. Arunachalam Chinnathambi and Sulaiman Ali Alharbi would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research group no. (RG-1435-081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Ganapathi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by H Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapildev, G., Chinnathambi, A., Sivanandhan, G. et al. High-efficient Agrobacterium-mediated in planta transformation in black gram (Vigna mungo (L.) Hepper). Acta Physiol Plant 38, 205 (2016). https://doi.org/10.1007/s11738-016-2215-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2215-6

Keywords

Navigation