Skip to main content
Log in

Biochemical and molecular changes induced by salinity stress in Oryza sativa L.

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity stress constrains the growth, development, and yield in crops. Rice is an important cereal crop highly affected by salinity. To ensure the agriculture production in salt-affected soils, it is enormously entail to understand the salt adaptation strategies of plants. Salinity directly affects the morphology, physiology, and metabolism of the plants. The current study was carried out to check the influence of different concentrations of sodium chloride on rice cultivar. Higher concentration of the NaCl showed significant reduction in the growth, pigment system, and metabolites in rice cultivars. Salinity also elicited the antioxidant enzymes (CAT, SOD, and POX) response and gene expression. Cell biological studies showed the H2O2 production and nuclear fragmentation due to alleviated salinity stress. To delineate the portrayal of antioxidant proteins and autophagy mechanism in salinity stress, the homologs of rice CAT1, Mn-SOD, GPX, ATG1, and ATG6 genes were retrieved from blast search. The real-time PCR analysis showed differential expression of genes and depicts new molecular insight of target genes to understand the salinity stress and autophagy-mediated stress signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amirjani MR (2010) Effect of salinity stress on growth, mineral composition, proline content antioxidant enzymes of soybean. Am J Plant Physiol 5:350–360

    Article  CAS  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    Article  CAS  Google Scholar 

  • Atlante A, Bobba A, Calissano P, Passarella S, Marra E (2003) The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death. J Neurochem 84:960–971

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Chandlee JM, Scandalios JG (1984) Analysis of variants affecting the catalase development program in Maize scutellum. Theor Appl Genet 69:71–77

    Article  CAS  PubMed  Google Scholar 

  • Chen HJ, Chen JY, Wang SJ (2008) Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiol Plant 30:135–142

    Article  CAS  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–537

    CAS  PubMed  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  • FAO, Rice Market Monitor (2012) Trade and Markets Division, Food and Agriculture Organization of the United Nations. XV (3). http://www.fao.org

  • Fojtova M, Kovarik A (2000) Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ 23:531–537

    Article  CAS  Google Scholar 

  • Gechev TS, Gadjev IZ, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants Cell. Mol Life Sci 61:1185–1197

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 1:1–18

    Article  Google Scholar 

  • Hashi US, Karim A, Saikat HM, Islam R, Islam MA (2015) Effect of salinity and potassium levels on different morpho-physiological characters of two soybean (Glycine max L.). Genotypes J Rice Res 3:143. doi:10.4172/2375-4338.1000143

    Google Scholar 

  • Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6:1837–1849

    Article  CAS  PubMed  Google Scholar 

  • Hummon AB, Lim SR, Difilippantonio MJ, Ried T (2007) Isolation and solubilization of proteins after TRIzol® extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idrees M, Naeem M, Aftab T, Khan MMA, Moinuddin (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle Catharanthus roseus (L.) G. Don 33:987–999

    CAS  Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65:2963–2979

    Article  PubMed  Google Scholar 

  • Jamil M, Lee CC, Rehman S, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of Brassica species at germination and early seedling growth. Electron J Environ Agric Food Chem 4:970–976

    CAS  Google Scholar 

  • Jamil M, Ashraf M, Rehman S, Ahmad M, Rha ES (2012) Salinity induced changes in cell membrane stability, protein and RNA contents. Afr J Biotechnol 11:6476–6483

    CAS  Google Scholar 

  • Jogaiah S, Ramteke SD, Sharma J, Upadhyay AK (2014) Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. Int J Agron. doi:10.1155/2014/789087

    Google Scholar 

  • Joseph EA, Mohanan KV (2013) A study on the effect of salinity stress on the growth and yield of some native rice cultivars of Kerala state of India. Agric For Fish 2:141–150

    Google Scholar 

  • Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 4:1049–1058

    Article  Google Scholar 

  • Khan MS, Hemalatha S (2015) Autophagy: molecular insight and role in plant programmed cell death and defense mechanism. Inte Res J Biol Sci 4:78–83

    Google Scholar 

  • Khan S, Qureshi MI, Kamaluddin Tanweer A, Abdin MZ (2007) Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr J Biotechnol 3:175–178

    Google Scholar 

  • Khan S, Mirza KJ, Abdin MZ (2010) Development of RAPD markers for authentication of medicinal plant Cuscuta reflexa. Eur Asia J BioSci 4:1–7

    Article  CAS  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278:19406–19415

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr et al (2003) A unified nomenclature for yeast autophagy related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Koukalova B, Kovarik A, Fajkus J, Siroky J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett 414:289–292

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Shriram V, Jawali N, Shitole MG (2007) Differential response of indica rice genotypes to NaCl stress in relation to physiological and biochemical parameters. Arch Agron Soil Sci 53:581–592

    Article  CAS  Google Scholar 

  • Kumar V, Singh A et al (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22:133–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Cho EJ et al (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maathuis FJM (2013) Sodium in plants: perception, signaling, and regulation of sodium fluxes. J Exp Bot 65:849–858

    Article  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  • Moharramnejad S, Taherkhani T (2015) Response of antioxidant enzyme activity and pigment content in common bean (Phaseolus vulgaris L.) seedlings under salt stress. Sci J (CSJ) 36:1–6

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Rana RM, Dong S, Ali Z, Huang J, Zhang HS (2012) Regulation of ATG6/beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Genet Mol Res 11:3676–3687

    Article  CAS  PubMed  Google Scholar 

  • Rao PS, Mishra B, Gupta SR, Rathore A (2013) Physiological response to salinity and alkalinity of rice genotypes of varying salt tolerance grown in field lysimeters. J Stress Physiol Biochem 9:54–65

    Google Scholar 

  • Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeeta Y, Mohd I, Aqil A, Shamsul H (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27:67–74

    Article  CAS  PubMed  Google Scholar 

  • Shobbar MS, Niknam V, Shobbar ZS, Ebrahimzadeh H (2010) Effect of salt and drought stresses on some physiological traits of three rice genotypes differing in salt tolerance. JSUTOR 36:1–9

    Google Scholar 

  • Shouval RS, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  Google Scholar 

  • Singh PK, Shahi SK, Singh AP (2015) Effects of salt stress on physico-chemical changes in maize (zea mays L.) plants in response to salicylic acid. Indian J Plant Sci 4:69–77

    Google Scholar 

  • Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008) An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59:4029–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana N, Ikeda T, Itoh R (2000) Corrigendum to effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 43:181–183

    Article  CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan S, Tripathy BC (2015) Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol Plant 153:477–491

    Article  CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32. doi:10.1007/978-3-642-00302-8-1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014a) Morphological and physiological responses of cotton (gossypium hirsutum L.) plants to salinity. PLoS ONE 9:1–14

    Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014b) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q et al (2009) Effects of salt and water logging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

  • Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 17:11549–11556

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to B.S. Abdur Rahman University, Chennai for providing the facilities and Junior Research Fellowship to (M. S. Khan) to carry out the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Apostol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Hemalatha, S. Biochemical and molecular changes induced by salinity stress in Oryza sativa L.. Acta Physiol Plant 38, 167 (2016). https://doi.org/10.1007/s11738-016-2185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2185-8

Keywords

Navigation