Skip to main content
Log in

Molecular cloning and characterization of anthocyanin biosynthesis genes in eggplant (Solanum melongena L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Eggplant is rich in anthocyanins, which are one of the important secondary metabolites and beneficial to human health. In this study, four anthocyanin biosynthesis genes, including chalcone synthase (SmCHS), chalcone isomerase (SmCHI), flavanone 3-hydroxylase (SmF3H) and dihydroflavonol 4-reductase (SmDFR), were isolated from eggplant. Their expression profiles were investigated along with other two structural genes (SmF3′5′H and SmANS) in different tissues, bagging, and low-temperature treatments. The highest expression levels were observed in peels except for SmF3H which was detected in stems, and SmF3H was also the exclusive gene that did not show correlation with anthocyanin content. Unlike purple peels of the control, the bagged fruits displayed white peels and had no anthocyanin accumulation, because of the expression of SmCHI, SmF3′5′H, SmDFR, and SmANS totally depended on light. As low temperature stimulates anthocyanin accumulation, all the six anthocyanin biosynthesis genes were up-regulated in cold stress experiment, and SmCHS increased most obviously. Moreover, early biosynthesis genes (SmCHS, SmCHI, and SmF3H) responded earlier than late biosynthesis genes (SmF3′5′H, SmDFR, and SmANS) under low temperature. Subcellular localization suggested that the enzymes encoded by the genes cloned in this study were all located in cytosol and nucleus. To further characterize the function, their ectopic expression in Arabidopsis was performed, and overexpression lines displayed higher anthocyanin accumulation in stems and siliques. The present study provides insight into anthocyanin biosynthesis in eggplant and may facilitate genetic engineering for improvement of the anthocyanin content in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed NU, Park JI, Jung HJ, Yang TJ, Hur Y, Nou I (2014) Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene 550:46–55

    Article  CAS  PubMed  Google Scholar 

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G, Sofic E, Prior RL (1996) Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44:3426–3431

    Article  CAS  Google Scholar 

  • Cericola F, Portis E, Lanteri S, Toppino L, Barchi L, Acciarri N, Pulcini L, Sala T, Rotino GL (2014) Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and fruit color in eggplant. BMC Genom 15:896

    Article  Google Scholar 

  • Chiu L, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Jeong JC, Kim WJ, Chung DM, Jeon HK, Ahn YO, Kim SH, Lee HS, Kwak SS, Kim CY (2013) Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis. Physiol Plant 148:189–199

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dare AP, Tomes S, Jones M, McGhie TK, Stevenson DE, Johnson RA, Greenwood DR, Hellens RP (2013) Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica). Plant J 74:398–410

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638

    Article  CAS  Google Scholar 

  • Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M (2003) Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci 164:333–340

    Article  CAS  Google Scholar 

  • Feng F, Li M, Ma F, Cheng L (2013) Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiol Biochem 69:54–61

    Article  CAS  PubMed  Google Scholar 

  • Feng FJ, Li MJ, Ma FW, Cheng LL (2014) The effects of bagging and debagging on external fruit quality, metabolites, and the expression of anthocyanin biosynthetic genes in ‘Jonagold’ apple (Malus domestica Borkh.). Sci Hortic 165:123–131

    Article  CAS  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Mol Bio 6:775–784

    Article  CAS  Google Scholar 

  • Huang X, Ouyang XH, Yang PY, Lau OS, Li G, Li JG, Chen HD, Deng XW (2012a) Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 24:4590–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Gou JQ, Jia ZC, Yang L, Sun YM, Xiao XY, Song F, Luo K (2012b) Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from populus trichocarpa. PLoS One 7:e30364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Wang JY, Jia HF, Jia WS, Wang HQ, Xiao M (2013) RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit. J Plant Growth Regul 32:182–190

    Article  CAS  Google Scholar 

  • Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J 25:325–333

    Article  CAS  PubMed  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Takahash A, Masuda T, Noji S (2015) Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit. Planta 241:953–965

    Article  CAS  PubMed  Google Scholar 

  • Koduri PH, Gordon GS, Barker EI, Colpitts CC, Ashton NW, Suh DY (2010) Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Mol Biol 72:247–263

    Article  CAS  PubMed  Google Scholar 

  • Lazze MC, Pizzala R, Perucca P, Cazzalini O, Savio M, Forti L, Vannini V, Bianchi L (2006) Anthocyanidins decrease endothelin-1 production and increase endothelial nitric oxide synthase in human endothelial cells. Mol Nutr Food Res 50:44–51

    Article  CAS  PubMed  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonialyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HH, Qiu J, Chen FD, Lv XF, Fu CX, Zhao DX, Hua XJ, Zhao Q (2012) Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa. Mol Biol Rep 39:2991–2999

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma H, Huang H, Li D, Yao S (2013) Natural anthocyanins from phytoresources and their chemical researches. Nat Prod Res 27:456–469

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Bai YC, Li CL, Yao HP, Chen H, Zhao HX, Wu Q (2015) Anthocyanins accumulate in tartary buckwheat (Fagopyrum tataricum) sprout in response to cold stress. Acta Physiol Plant. doi:10.1007/s11738-015-1913-9

    Google Scholar 

  • Liu HP, Fu DQ, Zhu BZ, Yan HX, Shen XY, Zuo JH, Zhu Y, Luo YB (2012) Virus-induced gene silencing in Eggplant (Solanum melongena). J Integr Plant Biol 54:422–429

    Article  CAS  PubMed  Google Scholar 

  • Liu ML, Li XR, Liu YB, Cao B (2013a) Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol Biochem 73:161–167

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Yin XR, Allan AC, Wang KL, Shi YN, Huang YJ, Ferguson IB, Xu CJ, Chen KS (2013b) The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthesis genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell Tissue Org 115:285–298

    Article  CAS  Google Scholar 

  • Liu SH, Ju JF, Xia GG (2014) Identification of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. Gene 543:145–152

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Song S, Yuan YB, Wu DJ, Chen MJ, Sun QN, Zhang B, Xu CJ, Chen KS (2015) Improved peach peel color development by fruit bagging. Enhanced expression of anthocyanin biosynthetic and regulatory genes using white non-woven polypropylene as replacement for yellow paper. Sci Hortic 184:142–148

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lo Piero AR, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53:9083–9088

    Article  CAS  PubMed  Google Scholar 

  • Lukacin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3ß-hydroxylase. Eur J Biochem 249:748–757

    Article  CAS  PubMed  Google Scholar 

  • Man YP, Wang YC, Li ZZ, Jiang ZW, Yang HL, Gong JJ, He SS, Wu SQ, Yang ZQ, Zheng J, Wang ZY (2015) High-temperature inhibition of biosynthesis and transportation of anthocyanins results in the poor red coloration in red-fleshed Actinidia chinensis. Physiol Plant 153:565–583

    Article  CAS  PubMed  Google Scholar 

  • Martens S, Teeri T, Forkmann G (2002) Heterologous expression of dihydroflavonol 4-reductase from various plants. FEBS Lett 531:453–458

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M (2003) Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J Agric Food Chem 51:3560–3563

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Muir S, Collins G, Robinson S, Hughes S, Bovy A, De Vos C, van Tunen A, Verhoeyen M (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  PubMed  Google Scholar 

  • Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887–899

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Pilu R, Tonelli C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240:901–911

    Article  CAS  PubMed  Google Scholar 

  • Polster J, Dithmar H, Burgemeister R, Friedemann G, Feucht W (2006) Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC), in vivo staining, and UV-visible spectroscopic titration. Physiol Plant 128:163–174

    Article  CAS  Google Scholar 

  • Ren LJ, Hu AL, Li YL, Zhang B, Zhang YJ, Tu Y, Chen GP (2014) Heterologous expression of BoPAP1 in tomato induces stamen specific anthocyanin accumulation and enhances tolerance to a long-term low temperature stress. J Plant Growth Regul 33:757–768

    Article  CAS  Google Scholar 

  • Romero I, Sanchez-Ballesta MT, Maldonado R, Escribano MI, Merodio C (2008) Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature. Plant Physiol 165:522–530

    Article  CAS  Google Scholar 

  • Rowan DD, Cao M, Lin-Wang K, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling CR, Hellens P, Schaffer RJ, Allan AC (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115

    Article  CAS  PubMed  Google Scholar 

  • Sarma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318

    Article  CAS  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 280:23735–23740

    Article  CAS  PubMed  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shvarts M, Borochov A, Weiss D (1997) Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol Plant 99:67–72

    Article  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Sun CD, Zheng YX, Tang XL, Jiang M, Zhang JK, Li X, Chen KS (2012) Purification and anti-tumor activity of cyanidin-3-O-glucoside from Chinese bayberry fruit. Food Chem 13:1287–1294

    Article  Google Scholar 

  • Sun W, Meng XY, Liang LJ, Jiang WS, Huang YF, He J, Hu HY, Almqvist J, Gao X, Wang L (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthesis pathway. PLoS One 10:e0119054

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai DQ, Tian J, Zhang J, Song TT, Yao YC (2014) A Malus crabapple chalcone synthase gene, McCHS, regulates red petal color and flavonoid biosynthesis. PLoS One 9:e110570

    Article  PubMed  PubMed Central  Google Scholar 

  • Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HL, Wang W, Zhang P, Pan QH, Zhan JC, Huang WD (2011) Gene transcript accumulation, tissue and subcellular localization of anthocyanidin synthase (ANS) in developing grape berries. Plant Sci 179:103–113

    Article  Google Scholar 

  • Wang HX, Fan WJ, Li H, Yang J, Huang JR, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthesis genes in relation to anthocyanin accumulation in the pericarp of Litchi Chinensis Sonn. PLoS One 6:e19455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  PubMed  Google Scholar 

  • Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    Article  CAS  PubMed  Google Scholar 

  • Xu WJ, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:1360–1385

    Google Scholar 

  • Zhang Y, Zheng S, Liu Z, Wang L, Bi Y (2010) Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J Plant Physiol 47:934–945

    Google Scholar 

  • Zhang B, Hu Z, Zhang Y, Li Y, Zhou S, Chen G (2012) A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica oleracea var. acephala f. tricolor). Plant Cell Rep 31:281–289

    Article  PubMed  Google Scholar 

  • Zhang HR, Zhao LX, Wang J, Zheng LL, Dang ZH, Wang YC (2014) Cloning and functional analysis of two flavanone-3-hydroxylase genes from Reaumuria trigyna. Acta Physiol Plant 36:1221–1229

    Article  CAS  Google Scholar 

  • Zhou L, Wang Y, Ren L, Shi QQ, Zheng BQ, Miao K, Cuo X (2014) Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco. Plant Cell Tissue Org 116:285–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31471870), the National Science Foundation for Young Scholars of China (31301770), and the Shanghai Seed Industry of Agricultural Science Project (2013, No. 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huoying Chen.

Ethics declarations

Conflict of interest

All the authors agreed the content of the manuscript and had no conflicting interest.

Additional information

Communicated by A. Chandra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2016_2172_MOESM1_ESM.tif

Supplementary Fig. 1 A schematic representation of the exon-intron architecture of SmCHS, SmCHI, SmF3H, and SmDFR. SmCHS consists of two exons (black box) and one intron (fold line); SmCHI consists of four exons (black box) and three introns (fold line); SmF3H consists of three exons (black box) and two introns (fold line); SmDFR consists of six exons (black box) and five introns (fold line). The scale bar indicates 100 bp. (TIFF 154 kb)

11738_2016_2172_MOESM2_ESM.tif

Supplementary Fig. 2 Phylogenetic trees based on the amino acid sequences of CHSs CHIs, F3Hs, and DFRs. These trees were constructed using the MEGA 6.0 and Neighbor-Joining method with 1000 bootstrap replicates. (TIFF 1815 kb)

11738_2016_2172_MOESM3_ESM.tif

Supplementary Fig. 3 Expression of SmCHS, SmCHI, SmF3H, and SmDFR in different transgenic Arabidopsis lines. (A) SmCHS; (B) SmCHI; (C) SmF3H; and (D) SmDFR. WT, wild-type Arabidopsis; L1-L10, transgenic Arabidopsis lines, respectively. Quantifications were normalized by the expression of Arabidopsis actin (NM_179953). Data represent mean ± SD of three biological replicates. (TIFF 664 kb)

Supplementary Table 1 List of primer sequences used in this study (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Liu, Y., Ren, L. et al. Molecular cloning and characterization of anthocyanin biosynthesis genes in eggplant (Solanum melongena L.). Acta Physiol Plant 38, 163 (2016). https://doi.org/10.1007/s11738-016-2172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2172-0

Keywords

Navigation