Skip to main content
Log in

Transcript analysis of citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Boron (B) toxicity reduces crop productivity and is a serious abiotic stress presenting in many parts of the world. MicroRNAs (miRNAs) play important roles in nutrient toxicity. In this study, we found that the B concentrations in roots and leaves of trifoliate orange (Poncirus trifoliata) were increased by 1.4- and 1.2-fold, respectively, after 10 days of excess B treatment (DAEBT). After 20 DAEBT, the B concentrations in roots and leaves increased by 2.8- and 2.0-fold, respectively. Transcript analysis showed that the miR397 relative transcript level decreased following the excess B treatment. Laccase7 (LAC7) was shown to be the target of miR397, and its transcription increased after the excess B treatment. In addition, the activity of laccase increased significantly following this treatment. Because LAC7 plays a role in lignin biosynthesis, we also measured the lignin concentrations in roots and leaves and found that they were increased following the excess B treatment. Our work demonstrates that decreased miR397 transcription plays a possible role in enhancing tolerance to B toxicity stress via negatively regulating LAC7 transcription and increasing the lignin concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek K-Y (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154

    Article  CAS  Google Scholar 

  • An J, Liu Y, Yang C, Zhou G, Wei Q, Peng S (2012) Isolation and expression analysis of CiNIP5, a citrus boron transport gene involved in tolerance to boron deficiency. Sci Hortic 142:149–154

    Article  CAS  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Biol 49:481–500

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Brown P et al (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Cañon P, Aquea F, Rodríguez-Hoces de la Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149:329–339

    PubMed  Google Scholar 

  • Chen C et al (2005) Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 33:e179–e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dean JFD, LaFayette PR, Rugh C, Tristram AH, Hoopes JT, Eriksson K-EL, Merkle SA (1998) Laccases associated with lignifying vascular tissues. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis (ACS Symp. Series), vol 697, pp 96–108. Am. Chem. Soc, Washington, DC, p 436

  • Dong C, Pei H (2014) Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. J Plant Biol 57:209–217

    Article  CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K (2005) A miRNA Involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Fukushima RS, Hatfield RD (2001) Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 49:3133–3139

    Article  CAS  PubMed  Google Scholar 

  • Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116:273–280

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2002) Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci Plant Nutr 48:357–364

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Deposition of suberin in roots of soybean induced by excess boron. Plant Sci 168:397–405

    Article  CAS  Google Scholar 

  • Hausman J, Evers D, Thiellement H, Jouve L (2000) Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Rep 19:954–960

    Article  CAS  Google Scholar 

  • Hu Y, Li WC, Xu Y, Li G, Liao Y, Fu F (2009) Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J Appl Genet 50:213–223

    Article  CAS  PubMed  Google Scholar 

  • Kou S, Wu X, Liu Z, Liu Y, Xu Q, Guo W (2012) Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues. Plant Cell Rep 31:2151–2163

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu Q, Tao N, Deng X (2006) Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J Huazhong Agric Univ 25:300–304

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S et al (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA 110:10848–10853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y et al (2014) Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol 14:123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(Suppl):S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  • McCaig BC, Meagher RB, Dean JF (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636

    Article  CAS  PubMed  Google Scholar 

  • Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Ozhuner E et al (2013) Boron stress responsive MicroRNAs and their targets in barley. PLoS One 8:e59543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Papa G et al (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol 117:352–359

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Jin Z, Li K, Yin H, Wang J, Yang A (2013) Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiol Biochem 70:221–234

    Article  CAS  PubMed  Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 27:1405–1414

    Article  CAS  Google Scholar 

  • Sheng O, Song S, Peng S, Deng X (2009) The effects of low boron on growth, gas exchange, boron concentration and distribution of ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks. Sci Hortic 121:278–283

    Article  CAS  Google Scholar 

  • Sheng O, Zhou G, Wei Q, Peng S, Deng X (2010) Effects of excess boron on growth, gas exchange, and boron status of four orange scion–rootstock combinations. J Plant Nutr Soil Sci 173:469–476

    Article  CAS  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Sterjiades R, Dean JF, Eriksson KE (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takano J et al (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turlapati PV, Kim K-W, Davin LB, Lewis NG (2011) The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function (s). Planta 233:439–470

    Article  CAS  PubMed  Google Scholar 

  • van de Mortel JE et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang G, Römheld V, Li C, Bangerth F (2006) Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.). J Plant Physiol 163:591–600

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhu M, Wei Z (2008) Cotton laccase gene overexpression in transgenic populus alba var.pyramidalis and its effects on the lignin biosynthesis in transgenic plants. J Mol Cell Biol 41:11–18

    Google Scholar 

  • Wang C et al (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37:629–672

    Google Scholar 

  • Yamasaki S, Noguchi N, Mimaki K (2007) Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. J Radiat Res 48:443–454

    Article  CAS  PubMed  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48:854–865

    Article  CAS  Google Scholar 

  • Zhang S, Yang Q, Ma R (2007) Erwinia carotovora ssp. carotovora infection induced “defense lignin” accumulation and lignin biosynthetic gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis). J Integr Plant Biol 49:993–1002

    Article  CAS  Google Scholar 

  • Zhou G, Peng S, Liu Y, Wei Q, Han J, Islam MZ (2014) The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 28:295–307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31272121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Zhong Liu or Shu-Ang Peng.

Additional information

Communicated by S. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, LF., Liu, YZ., Yin, XX. et al. Transcript analysis of citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity. Acta Physiol Plant 38, 18 (2016). https://doi.org/10.1007/s11738-015-2035-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2035-0

Keywords

Navigation