Skip to main content
Log in

Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Auxin has been widely implicated in various aspects of plant growth and development, including flower development. In order to further elucidate the role of auxin during flower development, especially on the pistil development process, auxin response factors (ARFs), an important component in auxin signalling pathway, were studied in the early flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). In this study, a comprehensive overview of the ARF gene family in Japanese apricot is presented, including the chromosomal locations, phylogenetic relationships, gene structures, the domain and nuclear localization analysis. Seventeen Japanese apricot genes that encode ARF proteins (PmARFs) have been identified based on the genome sequence of Japanese apricot. Comparison of the expression of some PmARF genes between perfect and imperfect flower buds in Japanese apricot suggests that PmARFs, especially the PmARF13 and PmARF17 gene may be required for pistil development and function in Japanese apricot. These results will be useful for future functional analyses of the ARF family genes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action Plant Physiology 111:9

    CAS  PubMed  Google Scholar 

  • Abel S, Ballas N, Wong LM, Theologis A (1996) DNA elements responsive to auxin Bioessays 18:647–654

    CAS  PubMed  Google Scholar 

  • Attia KA et al (2009) Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Iss Mol Biol 11(1):129

    Google Scholar 

  • Banks JA et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu M (1999) China fruit records-Mei China Forestry, Beijing

  • Davies PJ (1995) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic acids research:gkr367

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L (2012) High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot BMC genomics 13:371

    CAS  PubMed  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell Online 18:1873–1886

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T, Hagen G, Ulmasov T, Murfett J (1998) How does auxin turn on genes? Plant Physiol 118:341–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo A-Y, Zhu Q-H, Gu X, Ge S, Yang J, Luo J (2008) Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hardtke CS et al (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Hou J-H, Gao Z-H, Zhang Z, Chen S-M, Ando T, Zhang J-Y, Wang X-W (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29:473–480

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006a) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006b) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006c) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  CAS  PubMed  Google Scholar 

  • Kalluri UC, DiFazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci 94:11786–11791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 285:245–260

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Larsson E, Franks RG, Sundberg E (2013) Auxin and the Arabidopsis thaliana gynoecium. J Exp Bot 64:2619–2627

    Article  CAS  PubMed  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell Online 20:1738–1746

    Article  CAS  Google Scholar 

  • Li X et al (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141:1167–1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Hu L (2013a) Genome-wide analysis of the auxin response factor gene family in cucumber. Genet Mol Res 12:4317–4331

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hu L (2013b) Genome-wide analysis of the auxin response factor gene family in cucumber. Genet Mol Res 12:4317–4331

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2014) AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant J 80:629–641

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Fernández I et al (2014) The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium Frontiers in plant science 5:1–11

  • Mashiguchi K et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108:18512–18517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meisel L et al (2005) A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 38:83–88

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation The Plant Cell. Online 3:677–684

    CAS  Google Scholar 

  • Okushima Y et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell Online 17:444–463

    Article  CAS  Google Scholar 

  • Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype The Plant Cell. Online 13:829–841

    CAS  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity The Plant Cell. Online 17:2899–2910

    CAS  Google Scholar 

  • Petrášek J et al (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux Science 312:914–918

    PubMed  Google Scholar 

  • Punta M et al (2012) The Pfam protein families database. Nucl Acids Res 40:D290–D301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y (2003) Investigating ancient duplication events in the Arabidopsis genome. In: Genome evolution. Springer, pp 117–129

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Riaño-Pachón DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  CAS  PubMed  Google Scholar 

  • Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 121:1519–1532

    CAS  PubMed  Google Scholar 

  • Shi T, Zhang Q-L, Gao Z-H, Zhang Z, Zhuang W-B (2011) Analyses on pistil differentiation process and related biochemical indexes of two cultivars of Prunus mume. J Plant Res Environ 20:35–41

    Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci 99:13627–13632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stepanova AN et al (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis The Plant Cell. Online 23:3961–3973

    CAS  Google Scholar 

  • Sun Hai-long, Song Juan, Gao Zhi-hong, Ni Zhao-jun, Zhen Z (2014) Isolation and expression analysis of PmKNAT2 gene from Japanese apricot 47(17):3444–3452

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell Online 15:533–543

    Article  CAS  Google Scholar 

  • Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, Souer E, Koes R (2002) FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763

    Article  PubMed Central  PubMed  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell Online 9:1963–1971

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999a) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci 96:5844–5849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999b) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  CAS  PubMed  Google Scholar 

  • Wan S, Li W, Zhu Y, Liu Z, Huang W, Zhan J (2014) Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant cell Rep, pp 1–11

  • Wang S, Tiwari SB, Hagen G, Guilfoyle TJ (2005a) AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell Online 17:1979–1993

    Article  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005b) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  CAS  PubMed  Google Scholar 

  • Wang D et al (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z (2012) Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 39:2401–2415

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilmoth JC et al (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewska J et al (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  PubMed  Google Scholar 

  • Won C et al (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases OF Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci 108:18518–18523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis Science 291:306–309

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Fundamental Research Funds for the Central University (KYZ201208), the Qinglan Project of Jiangsu Province and the National Science Foundation of China (31101526) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Gao.

Additional information

Communicated by J.-H Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Gao, Z., Huo, X. et al. Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiol Plant 37, 145 (2015). https://doi.org/10.1007/s11738-015-1882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1882-z

Keywords

Navigation