Skip to main content
Log in

Effects of 2,4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present research work describes the effects of 2,4-dichlorophenoxyacetic acid (2,4-d)/Benzylaminopurine (BAP) ratio on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf-derived calli of Crataegus azarolus (hawthorn). The supplementation of 1.0 mg/L 2,4-d and 1.0 mg/L BAP to MS medium was found to be the most efficient for callus induction (as percentage and fresh weigh). The results of biochemical analysis showed that the highest total phenolic contents were obtained in callus cultured on MS medium supplemented with 2.0 mg/L 2,4-d and 1.0 mg/L BAP (52 ± 0.56 mg GAE/g DM) and were significantly lower than those of intact leaves (76 ± 1.72 mg GAE/g DM). However, the highest ascorbic acid contents were found in callus cultured on MS medium supplemented with 1.0 mg/L 2,4-d and 0.5 mg/L BAP (0.96 ± 0.13 mg AAE/g DM) and these amounts were statistically similar to those found in leaf tissues (0.74 ± 0.07 mg AAE/g DM). Antioxidant activities of callus extracts were determined using two TEAC assays and results showed that extract of callus cultured on MS medium supplemented with 2.0 mg/L 2,4-d and 1.0 mg/L BAP have the greatest antiradical activities against DPPH (124 ± 2.92 mg TE/g DM) and ABTS (0.19 ± 0.02 mg TE/g DM) compared to the leaves of field-grown plant. Thus, the use of high level of 2,4-d over BAP can be suitable to enhance the quality more than the quantity of bioactive compounds in leaf callus culture of hawthorn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2,4-d :

2,4-Dichlorophenoxyacetic acid

AAE:

Ascorbic acid equivalent

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid

BAP:

6-Benzylaminopurine

DCIP:

2,6-Dichloroindophenol

DM:

Dry matter

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FW:

Fresh weight

GAE:

Gallic acid equivalent

IAA:

Indole-3-acetic acid

KIN:

Kinetin

MS:

Murashige and Skoog

NAA :

1-Naphthaleneacetic acid

PAL:

Phenylalanine ammonia-lyase

TAL:

Tyrosine ammonia-lyase

TEAC:

Trolox equivalent antioxidant capacity

TE:

Trolox equivalent

References

  • Al Abdallat AM, Sawwan JS, Al Zoubi B (2011) Agrobacterium tumefaciens-mediated transformation of callus cells of Crataegus aronia. Plant Cell Tiss Organ Cult 104:31–39. doi:10.1007/s11240-010-9798-1

    Article  CAS  Google Scholar 

  • Association of vitamin chemists (1961) Methods of vitamin assay, 3rd edn. Interscience Publishers, New York

    Google Scholar 

  • Bahorun T (1995) Les polyphénols de Crataegus monogyna Jacq. in vivo et in vitro: analyses et activités antioxydantes. Dissertation, Université de Lille I

  • Bahorun T, Trotin F, Pommery J, Vasseur J, Pinkas M (1994) Antioxidant activities of Crataegus monogyna extracts. Planta Med 60(4):323–328

    Article  CAS  PubMed  Google Scholar 

  • Bahorun T, Aumjaud E, Ramphul H, Rycha M, Luximon-Ramma A, Trotin F, Aruoma OI (2003) Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts. Nahrung 47(3):191–198. doi:10.1002/food.200390045

    Article  CAS  PubMed  Google Scholar 

  • Bahri-Sahloul R, Ben Fredj R, Boughalleb N, Shriaa J, Saguem S, Hilbert JL, Trotin F, Ammar S, Bouzid S, Harzallah-Skhiri F (2014) Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. ovaries calli. J Bot 2014:1–11. doi:10.1155/2014/623651

    Article  Google Scholar 

  • Bignami C, Paolocci M, Scossa A (2003) Preliminary evaluation of nutritional and medicinal components of Crataegus azarolus fruits. Acta Hortic 597:95–100

    CAS  Google Scholar 

  • Bor Z, Arslan R, Bektas N, Pirildar S, Donmez AA (2012) Antinociceptive, antiinflammatory, and antioxidant activities of the ethanol extract of Crataegus orientalis leaves. Turk J Med Sci 42(2):315–324. doi:10.3906/sag-1011-1304

    Google Scholar 

  • Caboni E, Tonelli MG, Lauri P, Iacovacci P, Kevers C, Damiano C, Gaspar T (1997) Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biol Plantarum 39:91–97

    Article  CAS  Google Scholar 

  • Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH (2004) Anthraquinones production, hydrogen peroxide level and antioxidant vitamins in Morinda elliptica cell suspension cultures from intermediary and production medium strategies. Plant Cell Rep 22(12):951–958

    Article  CAS  PubMed  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660. doi:10.1016/j.foodchem.2005.04.028

    Article  CAS  Google Scholar 

  • Dou D, Leng P, Li Y, Zeng Y, Sun Y (2013) Comparative study of antioxidant compounds and antiradical properties of the fruit extracts from three varieties of Crataegus pinnatifida. J Food Sci Technol. doi:10.1007/s13197-013-0954-6

    Google Scholar 

  • Duangporn P, Siripong P (2009) Effect of auxin and cytokinin on phyllanthusol A production by callus cultures of Phyllanthus acidus skeels. Am Eurasia J Agric Environ Sci 5:258–263

    CAS  Google Scholar 

  • El-Baz FK, Mohamed AA, Ali SI (2010) Callus formation, phenolics content and related antioxidant activities in tissue culture of a medicinal plant colocynth (Citrullus colosynthis). Nova biotechnol 10(2):79–94

    Google Scholar 

  • Grzegorczyk I, Matkowski A, Wysokinska H (2007) Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem 104:536–541. doi:10.1016/j.foodchem.2006.12.003

    Article  CAS  Google Scholar 

  • Kartnig T, Kogl G, Heydel B (1993) Production of flavonoids in cell cultures of Crataegus monogyna. Planta Med 59(6):537–538

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agr Food Chem 51:6509–6515. doi:10.1021/jf0343074

    Article  CAS  Google Scholar 

  • Lakshmi T, Geetha RV, Anitha R (2012) Crataegus oxyacantha Linn commonly known as Hawthorn—a scientific review. Int J PharmTech Res 4(1):458–465

    Google Scholar 

  • Loewus FA, Kelly S (1991) Identity of l-ascorbic acid formed from d-glucose by strawberry (Fragaria). Nature 191:1059–1061. doi:10.1038/1911059a0

    Article  Google Scholar 

  • Maharik N, Elgengaihi S, Taha H (2009) Anthocyanin production in callus cultures of Crataegus sinaica boiss. Int J Acad Res 1:30–34

    Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26(6):548–560. doi:10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Sakurai M, Seki M, Furusaki S (1994) Use of axin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell. J Sci Food Agric 65:271–276

    Article  CAS  Google Scholar 

  • Murashige M, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nag R, Chaturvedi A, Sharma A, Bidawat S, Pareek LK, Nag TN (2012) Estimation of ascorbic acid content in Prosopis (L.) Druce Cultivar K1. Plant Tissue Cult Biotech 22(1):27–32

    Article  Google Scholar 

  • Norhayati Y, Nor `Aini MF, Misri K, Marziah M, Azman J (2011) α-tocopherol, ascorbic acid and carotenoid content in Centella asiatica leaf tissues and callus cultures. Pertanika J Trop Agric Sci 34(2):331–339

    Google Scholar 

  • Rakotoarison DA, Gressier B, Trotin F, Brunet C, Dine T, Luyckx M, Vasseur J, Cazin M, Cazin JC, Pinkas M (1997) Antioxidant activities of polyphenolic extracts from flowers, in vitro callus and cell suspension cultures of Crataegus monogyna. Pharmazie 52:60–64

    CAS  PubMed  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153. doi:10.1016/S0734-9750(02)00007-1

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  • Simoés C, Brasil Bizarri CH, Da Silva Cordeiro L, Carvalho de Castro T, Machado Coutada LC, Ribeiro da Silva AJ, Albarello N, Mansur E (2009) Anthocyanin production in callus cultures of Cleome rosea: modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiol Biochem 47(10):895–903. doi:10.1016/j.plaphy.2009.06.005

    Article  PubMed  Google Scholar 

  • Singh V, Nag TN (1991) Production of endogenous ascorbic acid from tissue cultures of Abutilon pannosum Forst. J Phytol Res 4:13–19

    Google Scholar 

  • Tabart J, Kevers C, Sipel A, Pincemail J, Defraigne JO, Dommes J (2006) Antioxidant capacity of black currant varies with organ, season, and cultivar. J Agric Food Chem 54:6271–6276. doi:10.1021/jf061112y

    Article  CAS  PubMed  Google Scholar 

  • Tabart J, Kevers C, Sipel A, Pincemail Defraigne JO, Dommes J (2007) Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chem 105:1268–1275

    Article  CAS  Google Scholar 

  • Tadolini B, Juliano C, Piu L, Franconi F, Cabrini L (2000) Resveratrol inhibition of lipid peroxidation. Free Radical Res 33:105–114. doi:10.1080/10715760000300661

    Article  CAS  Google Scholar 

  • Taha HS, Rahman AE, Fathalla RA, Kareem MA, Aly UE (2008) Successful application for enhancement and production of anthocyantn pigment from calli cultures of some ornamental plants. Aust J Basic Appl 2(4):1148–1156

    CAS  Google Scholar 

  • Tahirović A, Čopra–Janićijević A, Bašić N, Klepo L, Subašić M (2012) Determination of vitamin C in flowers of some bosnian Crataegus L. species. Works of the Faculty of Forestry University of Sarajevo 42(2): 1-12

  • Toker G, Memisoglu M, Toker MC, Yesilada E (2003) Callus formation and cucurbitacin B accumulation in Echallium elaterium callus cultures. Fitoterapia 74:618–623

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Jain V, Verma D, Khamesra R (2007) Crataegus oxyacantha—a cardioprotective herb. J Herb Med Toxicol 1:65–71

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all the memberships of CEDEVIT A.S.B.L (Liege) where the chemical analysis part was accomplished, as well as the memberships of Support Station of Manouba (Tunis) where the in vitro culture part was carried out.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghaya Chaâbani.

Additional information

Communicated by M. Lambardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaâbani, G., Tabart, J., Kevers, C. et al. Effects of 2,4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia . Acta Physiol Plant 37, 16 (2015). https://doi.org/10.1007/s11738-014-1769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1769-4

Keywords

Navigation