Skip to main content
Log in

Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Three differently adapted populations of sewan grass (Lasiurus scindicus Henr.) were evaluated for structural and functional adaptations to high salinity. The habitats were Derawar Fort (DF, least saline, ECe 15.21), Bailahwala Dahar (BD, moderately saline, ECe 27.56 dS m−1) and Ladam Sir (LS, highly saline, ECe 39.18 dS m−1) from within the Cholistan Desert. The adaptive components of salt tolerance in sewan grass were assessed by determining various morpho–anatomical and physiological attributes. The degree of salt tolerance of all three ecotypes of L. scindicus from the saline habitats was compared in a controlled hydroponic system to evaluate the adaptive components that are expected to be genetically fixed during a long evolutionary process. Salinity tolerance in the most tolerant LS population relied on increased root length and total leaf area, restricted uptake of toxic Cl, increased uptake of Ca2+, high excretion of Na+, accumulation of organic osmolytes, high water use efficiency, increased root, thicker leaf and cortical region, intensive sclerification, large metaxylem vessels, and dense pubescence on abaxial leaf surface. The BD population (from moderately saline soil) relied on high Ca2+ uptake, Na+ excretion, epidermal thickness, large cortical cells, thick endodermis and large vascular tissue. The DF population (from less saline soil) showed a significant decrease in all morphological characteristics; however, it accumulated organic osmolytes for its survival under high salinities. Structural modifications in all three populations were crucial for checking undue water loss under physiological stress that is caused by high amounts of soluble salts in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abernethy GA, Fountain DW, Manus MT (1998) Observations on the leaf anatomy of Festuca novaezelandiae and biochemical responses to a water deficit. New Zeal J Bot 36:113–123

    Article  Google Scholar 

  • Alvarez JM, Rocha JF, Machado SR (2008) Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function. Braz Arch Biol Technol 51:113–119

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arshad M, Hussan AU, Ashraf MY, Noureen S, Moazzam M (2008) Edaphic factors and distribution of vegetation in the Cholistan desert, Pakistan. Pak J Bot 40:1923–1931

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Aslam T, Bostan N, Amen N, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118

    CAS  Google Scholar 

  • Awasthi OP, Pathak RK, Pandey SD (1999) Anatomical variation in leaf lamina of ber seedling and budded plants grown at different sodicity levels. Ind J Hort 56:29–33

    Google Scholar 

  • Azizian A, Sepaskhah AR (2014) Maize response to water, salinity and nitrogen levels: physiological growth parameters and gas exchange. Int J Plant Prod 8:131–162

    CAS  Google Scholar 

  • Azmi AR, Alam SM (1990) Effect of salt stress on germination, growth, leaf anatomy and mineral element composition of wheat cultivars. Acta Physiol Plant 12:215–224

    CAS  Google Scholar 

  • Bagniewska ZA, Zenkteler E (2006) Ultrastructure of endodermis and stele cells of dehydrated Polypodium vulgare L. rhizomes. Acta Biol Crac Ser Bot 48:73–81

    Google Scholar 

  • Bahaji A, Mateu I, Sanz A, Cornejo MJ (2002) Common and distinctive responses of rice seedlings to saline and osmotically generated stress. Plant Growth Regul 38:83–94

    Article  CAS  Google Scholar 

  • Balsamo RA, Willigen CV, Bauer AM, Farrant J (2006) Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann Bot 97:985–991

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Basal H (2010) Response of cotton (Gossypium hirsutum L.) genotypes to salt stress. Pak J Bot 42:505–511

    Google Scholar 

  • Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baum SF, Tran PN, Silk WK (2000) Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytol 146:119–127

    Article  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Boughalleb F, Denden M, Tiba BB (2009) Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiol Plant 31:947–960

    Article  Google Scholar 

  • Breckle SW (2004) Flora, vegetation und Ökologie der alpinnivalen Stufe des Hindukusch (Afghanistan). In: Breckle SW, Schweizer B, Fangmeier A (eds) Proceedings of 2nd symposium A. F. W. Schimper–Foundation: results of worldwide ecological studies. Stuttgart–Hohenheim, Stuttgart, pp 97–117

    Google Scholar 

  • Chandramony D, George MK (1975) Nutritional effects of calcium, magnesium, silica and sodium chloride on certain anatomical characters of rice plant related to lodging. Agric Res J Kerala 13:39–42

    Google Scholar 

  • Curtis PS, Lauchli A (1987) The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (kenaf) and its relation to leaf area. Am J Bot 74:538–542

    Article  CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F (2011) Effect of Salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Biol 3:41–45

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Gielwanowska I, Szczuka E, Bednara J, Gorecki R (2005) Anatomical features and ultrastructure of Deschampsia Antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119

    Article  PubMed  Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 12:204–218

    Google Scholar 

  • Guo ZH, Miao XF (2010) Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Central South Uni Technol 17:770–777

    Article  CAS  Google Scholar 

  • Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora 203:683–694

    Article  Google Scholar 

  • Hameed M, Naz N, Ahmad MSA, Shazad ID, Riaz A (2008) Morphological adaptations of some grasses from the salt range, Pakistan. Pak J Bot 40:1571–1578

    Google Scholar 

  • Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322:229–238

    Article  CAS  Google Scholar 

  • Hameed M, Ashraf M, Naz N, Qurainy FA (2010) Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range Pakistan to salinity stress. I. Root and stem anatomy. Pak J Bot 42:279–289

    Google Scholar 

  • Hameed M, Ashraf M, Naz N (2011) Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan. Acta Physiol Plant 33:1399–1409

    Article  CAS  Google Scholar 

  • Hameed M, Nawaz T, Ashraf M, Tufail A, Kanwal H, Ahmad MSA, Ahmad I (2012) Leaf anatomical adaptations of some halophytic and xerophytic sedges of the Punjab. Pak J Bot 44:159–164

    Google Scholar 

  • Hameed M, Ashraf M, Naz N, Nawaz T, Batool R, Riaz A (2013) Physio-anatomical adaptations in response to salt stress in a potential forage grass Sporobolus arabicus Boiss. from a salt-affected sub-mountainous region. Turk J Bot 37:715–724

    CAS  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:85–193

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Hose E, Clarkson DT, Steudle E (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  PubMed  CAS  Google Scholar 

  • Jiang CD, Jiang GM, Wang X, Li LH, Biswas DK, Li YG (2006) Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environ Exp Bot 58:261–268

    Article  CAS  Google Scholar 

  • Jianjing MA, Chengjun JI, Mei H, Tingfang Z, Xuedong Y, Dong H, Hui Z, Jinsheng H (2012) Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grassland. Sci China Life Sci 55:68–79

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214

    Article  Google Scholar 

  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120

    Article  Google Scholar 

  • Liu DH, Wang M, Zou JH, Jiang WS (2006) Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize. Pak J Bot 38:701–709

    Google Scholar 

  • Lo TY, Cui HZ, Tang PWC, Leung HC (2008) Strength analysis of bamboo by microscopic investigation of bamboo fibre. Cons Build Mat 22:1532–1535

    Article  Google Scholar 

  • Lowry LH, Rosebrough NJ, Farra L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Majeed A, Mansoor SA (2010) Morphological variations in Panicum antidotale Retz. against salt stress. Biol E-J Life Sci 1:1–6

    Google Scholar 

  • Malibari AA, Zidan MA, Heikal MM, Shamary SE (1993) Effect of salinity on germination and growth of alfalfa, sunflower and sorghum. Pak J Bot 25:156–160

    CAS  Google Scholar 

  • Marcum KB, Pessarakli M (2006) Relative salinity tolerance and salt gland excretion activity of Bermuda grass turf cultivars. Crop Sci 46:2571–2574

    Article  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: A salinity tolerance mechanism among five zoysia grass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  PubMed  CAS  Google Scholar 

  • Monteverdi CM, Lauteri M, Valentini R (2008) Biodiversity of plant species and adaptation to drought and salt conditions. Selection of species for sustainable reforestation activity to combat desertification. In: Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhaüser Verlag, Switzerland, pp 197–206

    Chapter  Google Scholar 

  • Moor S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Naidoo L, Cho MA, Mathieu R, Asner G (2012) Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and Li-DAR data in a Random Forest data mining environment. J Photogram Remote Sensing 69:167–179

    Article  Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 34:5475–5480

    Google Scholar 

  • Nawazish S, Hameed M, Naurin S (2006) Leaf anatomical adaptations of Cenchrus ciliaris L. from the Salt Range, Pakistan against drought stress. Pak J Bot 38:1723–1730

    Google Scholar 

  • Naz N, Hameed M, Ashraf M, Ahmad R, Arshad M (2009a) Eco-morphic variation for salt tolerance in some grasses from Cholistan Desert, Pakistan. Pak J Bot 41:1707–1714

    Google Scholar 

  • Naz N, Hameed M, Wahid A, Arshad M, Ahmad MSA (2009b) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Plant 135:185–195

    Article  PubMed  CAS  Google Scholar 

  • Naz N, Hameed M, Ashraf M, Arshad M, Ahmad MSA (2010) Impact of salinity on species association and phytosociology of halophytic plant communities in the Cholistan desert, Pakistan. Pak J Bot 42:2359–2367

    Google Scholar 

  • Naz N, Hameed M, Nawaz T, Batool R, Ashraf M, Ahmad F, Ruby T (2013) Structural adaptations in the desert halophyte Aeluropus lagopoides (Linn.) Trin. ex Thw. under high salinity. J Biol Res-Thessaloniki 19:150–164

    Google Scholar 

  • Nilson SE, Assmann SM (2007) The control of transpiration: insights from Arabidopsis. Plant Physiol 143:19–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rashid P, Ahmed A (2011) Anatomical adaptations of Myriostachya wightiana hook. F. to salt stress. Dhaka Uni J Biol Sci 20:205–208

    Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, Oxford, p 322

    Google Scholar 

  • Saqib M, Akhtar J, Qureshi RH (2005) Na+ exclusion and salt resistance of wheat (Triticum aestivum) in saline–waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci 169:125–130

    Article  CAS  Google Scholar 

  • Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. Plant Stress Physiology. CAB International, Oxford, pp 59–93

    Google Scholar 

  • Taleisnik E, Peyrano G, Córdoba A, Arias C (1999) Water retention capacity in root segments differing in the degree of exodermis development. Ann Bot 83:19–27

    Article  Google Scholar 

  • Valenti GS, Ferro M, Ferraro D, Riveros F (1991) Anatomical changes in Prosopis tamarugo Phil. seedlings growing at different levels of NaCl salinity. Ann Bot 68:47–53

    Google Scholar 

  • Voltolini CH, Reis A, Santos M (2009) Leaf morpho-anatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Revista Bras de Biosci 7:335–343

    Google Scholar 

  • Weber DJ (2009) Adaptive mechanisms of halophytes in desert regions. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress. Springer-Verlag, Berlin, pp 179–186

    Chapter  Google Scholar 

  • Wolf B (1982) An improved universal extracting solution and its use for diagnosing soil fertility. Commun Soil Sci Plant Anal 13:1005–1033

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Shinozaki KYY, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • YuJing Z, Yong Z, ZiZhi H, ShunGuo Y (2000) Studies on microscopic structure of Puccinellia tenuiflora stem under salinity stress. Grassland China 5:6–9

    Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. Phil Harris (Department of Plant Sciences, Centre for Agroecology and Food Security, Coventry University, Priory Street, Coventry CV1 5FB, UK), who read and corrected the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Hameed.

Additional information

Communicated by B.Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, N., Rafique, T., Hameed, M. et al. Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta Physiol Plant 36, 2959–2974 (2014). https://doi.org/10.1007/s11738-014-1668-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1668-8

Keywords

Navigation