Skip to main content
Log in

Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’ production from Bacopa monnieri (L.) Wettst.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Stable lines of hairy roots were established from leaf explants of Bacopa monnieri using different strains (A4, R1000, SA79, MTCC 532 and MTCC 2364) of Agrobacterium rhizogenes. The efficiency of hairy roots induction of these strains varied significantly and the maximum transformation frequency (75 %) was observed in case of strain SA79 using leaf explants followed by internode (55 %) in the presence of acetosyringone. Different parameters such as cell density of Agrobacterium suspension, co-cultivation period and infection time influenced the root induction frequency. Maximum frequency of root induction was obtained with bacterial density of 0.6 OD600, 2 days of co-cultivation period and 10 min of infection time. Integration of T-DNA in the genome of hairy roots was confirmed by PCR amplification of rolB gene. Elimination of Agrobacterium from the established root cultures was ascertained by amplifying the DNA fragment specific to 16S rDNA and virD gene. All lines of hairy roots except strain A4 induced showed higher growth rate and accumulated higher levels of ‘bacoside A’ than the untransformed roots. Maximum biomass accumulation (6.8 g l−1) and ‘bacoside A’ content (10.02 mg g−1 DW) were recorded in case of the hairy root line induced by strain MTCC 2364.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal D, Jaiswal N, Kumar A, Reddy MS (2013) Factors affecting genetic transformation and shoot organogenesis of Bacopa monnieri (L.) Wettst. J Plant Biochem Biotechnol 22:382–391

    Article  Google Scholar 

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1988) Wealth of India, raw materials. Council of Scientific and Industrial Research (CSIR), New Delhi

    Google Scholar 

  • Bansal M, Kumar A, Reddy MS (2014) Diversity among wild accessions of Bacopa monnieri (L.) Wettst. and their morphogenetic potential. Acta Physiol. doi:10.1007/s11738-014-1493-0

    Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Chatterji N, Rastogi RP, Dhar ML (1965) Chemical examination of Bacopa monnieri Wettst.: parti-isolation of chemical constituents. Indian J Chem 3:24–29

    CAS  Google Scholar 

  • Cho HJ, Widholm JM, Tanaka N, Nakanishi Y, Murooka Y (1998) Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci 138:53–65

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15

    Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Radicle biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  PubMed  CAS  Google Scholar 

  • Giri A, Ravindra ST, Dhingra V, Narasu ML (2001) Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and artemisinin production in Artemisia annua. Curr Sci 81:378–382

    CAS  Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Article  PubMed  CAS  Google Scholar 

  • Jian B, Hou W, Wu C, Liu B, Liu W, Song S, Bi Y, Han T (2009) Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Jun YX, Qing Y, Qin J, Ming LY, Feng ZY, Ke G, Zhan WD (2007) Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using beta -glucuronidase (GUS) as a reporter. Afr J Biotechnol 6:2578–2584

    Google Scholar 

  • Kang HJ, Anbazhagan VR, You XL, Moon HK, Yi JS, Choi YE (2006) Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell Tissue Org Cult 85:187–196

    Article  CAS  Google Scholar 

  • Karthikeyan AS, Sarma KS, Veluthambi K (1996) Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep 15:328–331

    Article  PubMed  CAS  Google Scholar 

  • Lemcke K, Schmulling T (1998) A putative rol B gene homologue of Agrobacterium rhizogenes TL-DNA has different morphogenetic activity in tobacco than rolB. Plant Mol Biol 15:423–434

    CAS  Google Scholar 

  • Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ooi CT, Syahida A, Stanslas J, Maziah M (2013) Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum. World J Microbiol Biotechnol 29:421–430

    Article  PubMed  CAS  Google Scholar 

  • Pase MP, Kean J, Sarris J, Neale C, Scholey AB, Stough C (2012) The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complem Med 18:647–652

    Article  Google Scholar 

  • Porter RR (1991) Host range and implication of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Article  Google Scholar 

  • Potrykus I (1990) Gene transfer to plants: assessment and perspectives. Physiol Plant 79:125–134

    Article  CAS  Google Scholar 

  • Rahman LU, Verma PC, Singh D, Gupta MM, Banerjee S (2002) Bacoside production by suspension cultures of Bacopa monnieri (L.) Pennell. Biotechnol Lett 24:1427–1429

    Article  CAS  Google Scholar 

  • Rajani M (2008) Bacopa monnieri, a nootropic drug. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. pp 175–195

  • Rastogi RP (1990) Compendium of Indian medicinal plants, vol 1. CSIR, New Delhi, pp 118–122

    Google Scholar 

  • Russo A, Borrelli F (2005) Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 12:305–317

    Article  PubMed  CAS  Google Scholar 

  • Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Satsangi R, Pandey R, Singh R, Kaushik N, Tyagi RK (2012) In vitro conservation of Bacopa monnieri (L.) using mineral oil. Plant Cell Tiss Org Cult 111:291–301

    Article  CAS  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN (2008) Individual and combined effect of the rol A, B and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125

    Article  PubMed  CAS  Google Scholar 

  • Sonia Saini R, Singh RP, Jaiswal PK (2007) Agrobacterium tumefaciens-mediated transfer of Phaseolus vulgaris a-amylase inhibitor-1 gene into mungbean: Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  PubMed  CAS  Google Scholar 

  • Sujatha G, Zdravkovic-Korac S, alic DC, Flaminic G, Ranjitha Kumaria BD (2013) High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Artemisia vulgaris: Hairy root production and essential oil analysis. Ind Crop Prod 44:643–652

    Article  CAS  Google Scholar 

  • Tao J, Li L (2006) Genetic transformation of Torenia fournieri L. mediated by Agrobacterium rhizogenes. South Afr J Bot 72:211–216

    Article  Google Scholar 

  • Thimmaraju R, Venkatachalam L, Bhagyalakshmi N (2008) Morphometric and biochemical characterization of red beet (Beta vulgaris L.) hairy roots obtained after single and double transformations. Plant Cell Rep 27:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Tiwari V, Singh BD, Tiwari NK (1998) Shoot regeneration and somatic embryogenesis from different explants of Brahmi Bacopa monniera (L.) Wettst. Plant Cell Rep 17:538–543

    Article  CAS  Google Scholar 

  • Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep 26:199–210

    Article  PubMed  CAS  Google Scholar 

  • Tripathi N, Chouhan DS, Saini N, Tiwari S (2012) Assessment of genetic variations among highly endangered medicinal plant Bacopa monnieri (L.) from Central India using RAPD and ISSR analysis. 3. Biotech 2:327–336

    Google Scholar 

  • Weisburg WA, Barns SM, Pelletier DA, Lane DJ (1991) 16S rDNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zehra M, Banerjee S, Sharma S, Kumar S (1999) Influence of Agrobacterium rhizogenes strains on biomass and alkaloid productivity in hairy root lines of Hyoscyamus muticus and H. albus. Planta Med 65:60–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grant Commission (UGC), Govt. of India, New Delhi for the financial assistance. Professor A. K. Srivastava, Indian Institute of Technology, New Delhi is thanked for providing some of the strains of Agrobacterium rhizogenes and Professor Desh Bir Sharma is thanked for editing the English of the ms. Thanks are also due to TIFAC-CORE, Thapar University Patiala for the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Additional information

Communicated by K.-Y. Paek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, M., Kumar, A. & Sudhakara Reddy, M. Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’ production from Bacopa monnieri (L.) Wettst.. Acta Physiol Plant 36, 2793–2801 (2014). https://doi.org/10.1007/s11738-014-1650-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1650-5

Keywords

Navigation