Skip to main content
Log in

Nitric oxide is involved in salicylic acid-induced flowering of Lemna aequinoctialis Welw.

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is a well-known inducer of flowering in Lemna under both non-inductive and inductive photoperiod conditions. However, the underlying mechanism is not well understood. Herein, we report for the first time that nitric oxide (NO) is partially involved in SA-induced flowering in L. aequinoctialis (Syn. L. paucicostata Hegelm.). Our results demonstrated that SA-induced flowering is significantly reduced by exogenous application of NO scavengers; 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue, nitric oxide synthase inhibitors; N-ω-nitro-l-arginine and N-ω-nitro-l-arginine-methyl ester hydrochloride, and nitrate reductase inhibitor; sodium tungstate in two strains of Lemna viz. 6746 and LP6. Altogether our present findings shed a light on the new role of NO in SA-induced flowering and open interesting directions that need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ansari MS, Misra N (2007) Miraculous role of salicylic acid in plant and animal systems. Am J Plant Physiol 2:51–58

    Article  CAS  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Bonner J, Devirian PS (1939) Growth factor requirements of four species of isolated roots. Am J Bot 26:661–665

    Article  CAS  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54:904–906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by NO cyclic GMP, and cyclic ADP- ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Endo J, Takahashi W, Ikegami T, Beppu T, Tanaka O (2009) Induction of flowering by inducers of systemic acquired resistance in the Lemna plant. Biosci Biotechnol Biochem 73:183–185

    Article  PubMed  CAS  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis 56(1):57–63

    Google Scholar 

  • Hao F, Zhao S, Dong H, Zhang H, Sun L, Miao C (2010) Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. J Integr Plant Biol 52:298–307

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma K, Funadera K, Furukawa K, Miyamoto-Shinohara Y (1988) Rhythmic oscillation of cyclic 3′,5′-AMP and -GMP concentration and stimulation of flowering by cyclic 3′,5′-GMP in Lemna paucicostata 381. Photochem Photobiol 48:89–92

    Article  CAS  Google Scholar 

  • Hillman WS, Posner HB (1971) Ammonium ion and the flowering of Lemna perpusilla. Plant Physiol 47:580–587

    Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    Article  PubMed  CAS  Google Scholar 

  • Kalra C, Babbar SB (2010) Nitric oxide promotes in vitro organogenesis in Linum usitatissimum L. Plant Cell Tiss Org Cult 103:353–359

    Article  CAS  Google Scholar 

  • Kandeler R (1984) Flowering in the Lemna system. Phyton 24:113–124

    CAS  Google Scholar 

  • Khurana JP, Cleland CF (1992) Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiol 100:1541–1546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khurana JP, Maheshwari SC (1978) Induction of flowering in Lemna paucicostata by salicylic acid. Plant Sci Lett 12:127–131

    Article  CAS  Google Scholar 

  • Khurana JP, Maheshwari SC (1983) Effects of 8-hydroxyquinoline on flowering and endogenous levels of iron and copper in Lemna paucicostata, strain LP6. Plant Cell Physiol 24:1251–1254

    CAS  Google Scholar 

  • Khurana JP, Tamot BK, Maheshwari N, Maheshwari SC (1987) Role of catecholamines in promotion of flowering in a short-day duckweed, Lemna paucicostata 6746. Plant Physiol 85:10–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khurana A, Khurana JP, Babbar SB (2011) Nitric oxide (NO) induces flowering in the duckweed Lemna aequinoctialis Welw (syn L paucicostata Hegelm) under noninductive conditions. J Plant Growth Regul 30:378–385

    Article  CAS  Google Scholar 

  • Klepper L (1979) Nitric oxide (NO) and Nitrogen dioxide (NO2) emissions from herbicide-treated soyabean plants. Atm Environ 13(4):537–542

    Article  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–169

    Article  CAS  Google Scholar 

  • Liu X, Zhang SQ, Lou CH (2003) Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement. Chin Sci Bul 48:449–452

    CAS  Google Scholar 

  • Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H (2012) FTIP1 is an essential regulator required for florigen transport. PLoS Biol 10(4):e1001313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide: a ubiquitous signaling molecule with diverse role in plants. Afr J Plant Sci 5:57–74

    CAS  Google Scholar 

  • Raskin I, Turner IM, Melander WR (1990) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86:2214–2218

    Article  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  PubMed  CAS  Google Scholar 

  • Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 4:534–539

    Article  Google Scholar 

  • Shimakawa A, Shiraya T, Ishizuka Y, Wada KC, Mitsui T, Takeno K (2012) Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata. J Plant Physiol 169:987–991

    Article  PubMed  CAS  Google Scholar 

  • Song F, Goodman RM (2001) Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant Microbe Interact 14:1458–1462

    Article  PubMed  CAS  Google Scholar 

  • Sun LR, Hao FS, Lu BS, Ma LY (2010) AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signal Behav 5:1022–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2006) The involvement of cyclic ADPR in photoperiodic flower induction of Pharbitis nil. J Plant Growth Regul 25:233–244

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer, USA

    Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Tao Z (2007) Studies on in vitro flowering and fruiting of Perilla frutescens. Agri Sci China 6:33–37

    Article  Google Scholar 

  • Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5:1–4

    Article  Google Scholar 

  • Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    Article  CAS  Google Scholar 

  • Ye Z, Rodriguez R, Tran A, Hoang H, Santos D, Brown S, Vellanoweth LR (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 158:115–127

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Lin HH (2008) Role of salicylic acid in plant abiotic stress. Z Naturforsch C 63:313–320

    PubMed  CAS  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AK acknowledges the awards of Junior Research Fellowship and Senior Research Fellowship by the Council of Scientific and Industrial Research (CSIR), New Delhi. We are grateful to Professor J.P. Khurana, Department of Plant Molecular Biology, University of Delhi South Campus, Delhi, India for providing aseptic cultures of L. aequinoctialis Welw., strains 6746 and LP6. AK thanks Dr. Hridayesh Prakash, University of Hyderabad, India for critical reading of the manuscript. The research work presented in this paper was also supported by R&D Miscellaneous Grants given to SBB from the University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Khurana.

Additional information

Communicated by A. Gniazdowska-Piekarska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, A., Kumar, R. & Babbar, S.B. Nitric oxide is involved in salicylic acid-induced flowering of Lemna aequinoctialis Welw.. Acta Physiol Plant 36, 2827–2833 (2014). https://doi.org/10.1007/s11738-014-1600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1600-2

Keywords

Navigation