Skip to main content
Log in

Functional analyses of the maize CKS2 gene promoter in response to abiotic stresses and hormones

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In our previous research, we showed that the cyclin-dependent kinase regulatory subunit (CKS2) in maize (Zea mays L.) was induced by water deficit and cold stress. To elucidate its expression patterns under adversity, we isolated and characterized its promoter (PZmCKS2). A series of PZmCKS2-deletion derivatives, P0–P3, from the translation start code (−1,455, −999, −367, and −3 bp) was fused to the β-glucuronidase (GUS) reporter gene, and each deletion construct was analyzed by Agrobacterium-mediated steady transformation into Arabidopsis. Leaves were then subjected to dehydration, cold, abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA). Sequence analysis showed that several stress-related cis-acting elements (MBS, CE3, TGA element, and ABRE) were located within the promoter. Deletion analysis of the promoter, PZmCKS2, suggested that the −999 bp promoter region was required for the highest basal expression of GUS, and the −367 bp sequence was the minimal promoter for ZmCKS2 activation by low temperature, ABA, and MeJA. The cis-acting element ABRE was necessary for promoter activation by exogenous ABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

4-MU:

4-Methylumbelliferone

ABRE:

Abscisic acid-responsive element

CRT/DRE:

C-repeat/dehydration-responsive element

CDK:

Cyclin-dependent kinases

CE3:

Coupling element

CKS:

Cyclin-dependent kinase unit

GUS:

Glucuronidase

MeJA:

Methyl jasmonic acid

MS:

Murashige and Skoog medium

PEG:

Polyethylene glycol

SA:

Salicylic acid

ABA:

Abscisic acid

References

  • Benfey PN, Ren L, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8(8):2195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bousquet J, Simon L, Lalonde M (1990) DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can J Forest Res 20(2):254–257

    Article  CAS  Google Scholar 

  • Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37(3):425–435

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Nelson R, Sherwood J (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(4):664–668 (670)

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Agrobacterium thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Chinnusamy V, Bansal KC (2010) Isolation and functional characterization of lycopene β-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biol 10(1):61

    Article  PubMed Central  PubMed  Google Scholar 

  • De Veylder L, Beemster GT, Beeckman T, Inzé D (2001) Cks1at overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant J 25(6):617–626

    Article  PubMed  Google Scholar 

  • Doonan JH, Kitsios G (2009) Functional evolution of cyclin-dependent kinases. Mol Biotechnol 42(1):14–29

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  CAS  PubMed  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum Vulgare L.). Plant Mol Biol 38(4):551–564

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2(7):266–274

    Article  Google Scholar 

  • Egan EA, Solomon MJ (1998) Cyclin-stimulated binding of CKS proteins to cyclin-dependent kinases. Mol Cell Biol 18(7):3659–3667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Pichersky E, Malik V, Timko M, Scolnik P, Cashmore A (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. P Natl Acad Sci USA 85(19):7089–7093

    Article  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann J, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hadwiger J, Wittenberg C, Mendenhall M, Reed S (1989) The saccharomyces cerevisiae cks1 gene, a homolog of the schizosaccharomyces pombe suc1+ gene, encodes a subunit of the cdc28 protein kinase complex. Mol Cell Biol 9(5):2034–2041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harper JW (2001) Protein destruction: adapting roles for cks proteins. Curr Biol 11(11):R431–R435

    Article  CAS  PubMed  Google Scholar 

  • Hayles J, Aves S, Nurse P (1986) Suc1 is an essential gene involved in both the cell cycle and growth in fission yeast. EMBO J 5(12):3373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999a) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999b) A bzip factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. P Natl Acad Sci USA 96(26):15348–15353

    Article  CAS  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149(2):479–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang JKHBK (2009) The promoter of the pepper pathogen-induced membrane protein gene CAPIMP1 mediates environmental stress responses in plants. Planta 229:249–259

    Article  PubMed  Google Scholar 

  • Hwang S-H, Hwang D-J (2010) Isolation and characterization of the rice NPR1 promoter. Plant Biotechnol Reports 4(1):29–35

    Article  Google Scholar 

  • Hwang S-H, Lee IA, Yie SW, Hwang D-J (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227(5):1141–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jefferson RA (1988) Plant reporter genes: the GUS gene fusion system. Genet Eng 10:247–263

    Article  CAS  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter brassica napus. Plant Mol Biol 30(3):679–684

    Article  CAS  PubMed  Google Scholar 

  • Liberal V, Martinsson-Ahlzen H, Liberal J, Spruck C, Widschwendter M, McGowan C, Reed S (2011) Breast cancer special feature: cyclin-dependent kinase subunit (cks) 1 or cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. P Natl Acad Sci USA 109(8):2754–2759

    Article  Google Scholar 

  • Liberal V, Martinsson-Ahlzén H-S, Liberal J, Spruck CH, Widschwendter M, McGowan CH, Reed SI (2012) Cyclin-dependent kinase subunit (cks) 1 or cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. P Natl Acad Sci USA 109(8):2754–2759

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆ct method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loake GJ, Faktor O, Lamb CJ, Dixon RA (1992) Combination of H-box [CCTACC (N) 7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. P Natl Acad Sci USA 89(19):9230–9234

    Article  CAS  Google Scholar 

  • Machens F, Becker M, Umrath F, Hehl R (2014) Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol Biol 84:371–385

  • Martinsson-Ahlzén H-S, Liberal V, Grünenfelder B, Chaves SR, Spruck CH, Reed SI (2008) Cyclin-dependent kinase-associated proteins cks1 and cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Mol Cell Biol 28(18):5698–5709

    Article  PubMed Central  PubMed  Google Scholar 

  • McKendree WL Jr, Ferl RJ (1992) Functional elements of the arabidopsis ADH promoter include the G-box. Plant Mol Biol 19(5):859–862

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Kiran K, Chaturvedi CP, Ansari SA, Lodhi N, Sawant S, Tuli R (2005) Effect of copy number and spacing of the acgt and GT cis elements on transient expression of minimal promoter in plants. J Genet 84(2):183

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC300730/pdf/1331755.pdf

  • Reynard GJ, Reynolds W, Verma R, Deshaies RJ (2000) Cks1 is required for G1 cyclin–cyclin-dependent kinase activity in budding yeast. Mol Cell Biol 20(16):5858–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11(3):513–523

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Klessig DF (1996) Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis related β-1, 3-glucanase gene, PR-2d. Plant J 10(6):1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Ho T (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell Online 7(3):295–307

    Article  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho T (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell Online 8(7):1107–1119

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Straub PF, Shen Q, T-Hd Ho (1994) Structure and promoter analysis of an ABA-and stress-regulated barley gene, HVA1. Plant Mol Biol 26(2):617–630

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell Online 15(9):2076–2092

    Article  CAS  Google Scholar 

  • Sun H, Huang X, Xu X, Lan H, Huang J, Zhang HS (2012) ENAC1, a NAC transcription factor, is an early and transient response regulator induced by abiotic stress in rice (oryza sativa L.). Mol Biotechnol 52:1–10

    Article  Google Scholar 

  • Villain P, Clabault G, Mache R, Zhou D-X (1994) S1f binding site is related to but different from the light-responsive gt-1 binding site and differentially represses the spinach rps1 promoter in transgenic tobacco. J Biol Chem 269(24):16626–16630

    CAS  PubMed  Google Scholar 

  • Villain P, Mache R, Zhou D-X (1996) The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem 271(51):32593–32598

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar B, Armstrong G, Block A, e Silva ODC, Hahlbrock K (1991) Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J 10(7):1777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of RD22, a gene responsive to dehydration stress in Aarabidopsis thaliana. Mol Gen Genet 238(1–2):17–25

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell Online 6(2):251–264. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC160431/pdf/060251.pdf

  • Zhou D-X (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4(6):210–214

    Article  PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Twelfth Five Year Plan Project of Science and Technology Support, P. R. China (2012BAD19B04, 2014BAD14B02), the Ministry of Agriculture Key Project of GM Cultivation of New Varieties, P. R. China (2013ZX08004004), and the Research and Development of Industrial Technology Special at Jilin Provincial Development and Reform Commission (2013C001). We express our sincere appreciation to the anonymous reviewers for their insightful comments, which greatly aided us in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Pan.

Additional information

Communicated by M. Hajduch.

F. Wang and J. Liu equally contributed to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Liu, J., Li, J. et al. Functional analyses of the maize CKS2 gene promoter in response to abiotic stresses and hormones. Acta Physiol Plant 36, 1867–1878 (2014). https://doi.org/10.1007/s11738-014-1563-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1563-3

Keywords

Navigation