Skip to main content

Advertisement

Log in

Copy number variations of functional genes influence contents of glycyrrhizic acid in Glycyrrhiza uralensis

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Glycyrrhiza uralensis is a widely used Chinese herb and glycyrrhizic acid is believed to be its marker compound. Three key enzymes, 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), squalene synthase (SQS) and beta-amyrin synthase (β-AS), are involved in the glycyrrhizic acid biosynthetic pathway. In this paper, the relationship between copy number variations (CNVs) of HMGR, SQS and β-AS genes and the content levels of glycyrrhizic acid in G. uralensis were investigated. CNVs of the 62 G. uralensis samples from different origins were determined by real-time PCR and their glycyrrhizic acid contents were analyzed by HPLC. The real-time PCR results showed that the copy numbers of HMGR, SQS1 and β-AS in the 62 G. uralensis samples were either one copy or two copies. According to the copy number patterns of HMGR, SQS1 and β-AS, the 62 G. uralensis samples can be divided into six groups. Among the six groups, group B with two copies of HMGR, one copy of SQS1 and β-AS contained relatively higher contents of glycyrrhizic acid. The accumulation of glycyrrhizic acid was lower in the group C with two copies of β-AS, one copy of SQS1 and HMGR. The results of this work may provide a basis for enhancing the accumulation of glycyrrhizic acid in cultivars of G. uralensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNVs:

Copy number variations

HMGR:

3-Hydroxy-3-methylglutaryl CoA reductase

MVA:

Mevalonic acid

SQS:

Squalene synthase

β-AS:

β-Amyrin synthase

RSD:

Relative standard deviation

References

  • Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75(13):1453–1458. doi:10.1055/s-0029-1185775

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Kinston RE, Seidman JG, Strahl K, Brent R, Moore DD, Smith JA (2005) Short protocols in molecular biology. In: E. coli, plasmid and bacteriophage, p 25, 1st edn. Science Press, Beijing

  • Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646. doi:10.1038/nrg2149

    Article  CAS  PubMed  Google Scholar 

  • Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitors. Plant Physiol 85:469–473. doi:10.1104/pp.85.2.469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherng JM, Lin HJ, Hsu YH, Hung MS, Lin JC (2004) A quantitative bioassay for HIV-1 gene expression based on UV activation effect of glycyrrhizic acid. Antiviral Res 62:27–36. doi:10.1364/JOSAA.25.000335

    Article  CAS  PubMed  Google Scholar 

  • Dai ZB, Cui GH, Zhou SF, Zhang XN, Huang LQ (2011) Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme-A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. J Plant Physiol 168:148–157. doi:10.1016/j.jplph.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:248–254. doi:10.1186/gb-2004-5-11-248

    Article  PubMed Central  PubMed  Google Scholar 

  • Harker M, Holmberg N, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A, Safford R (2003) Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl CoA reductase. Plant Biotechnol J 1:113–121. doi:10.1046/j.1467-7652.2003.00011.x

    Article  CAS  PubMed  Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564. doi:10.1038/nrg2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi H, Huang PY, Kirakosyan A, Inoue K, Hiraoka N, Ikeshiro Y, Kushiro T, Shibuya M, Ebizuka Y (2001) Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in Licorice. Biol Pharm Bull 24:912–916. doi:10.1248/bpb.24.912

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Huang PY, Inoue K (2003) Up-regulation of soyasaponin biosynthesis by methyl Jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 44(4):404–411. doi:10.1093/pcp/pcg054

    Article  CAS  PubMed  Google Scholar 

  • Hoever G, Bzltina L, Michaelis M (2005) Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 48:1256–1259. doi:10.1021/jm0493008

    Article  CAS  PubMed  Google Scholar 

  • Kang TW, Jeon YJ, Jang E, Kim HJ, Kim JH, Park JL, Lee S, Kim YS, Kim JY, Kim SY (2008) Copy number variations (CNVs) identified in Korean individuals. BMC Genom 9:492–499. doi:10.1186/1471-2164-9-492

    Article  Google Scholar 

  • Kribii R, Arro M, Arco AD, Gonzalez V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur J Biochem 249:61–69. doi:10.1111/j.1432-1033.1997.00061.x

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984. doi:10.1093/pcp/pch126

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu CS (2012) Study on the spatial and temporal expression of β-AS gene of Glycyrrhiza uralensis. J Chin Med Mater 35(4):528–531

    CAS  Google Scholar 

  • Liu Y, Liu DJ, Liu CS, Liao CL, Cheng XL (2012a) Mechanism of genuineness of liquorice Glycyrrhiza uralensis based on CNVs of HMGR, SQS1 and β-AS gene. Acta Pharm Sin 47(2):250–255

    CAS  Google Scholar 

  • Liu Y, Liu DJ, Liu CS (2012b) Establishment of detection system of CNVs of HMGR, SQS1, β-AS synthase gene of Glycyrrhiza uralensis. China J Chin Mater Med 37(3):283–287. doi:10.4268/cjcmm20120305

    Google Scholar 

  • Lu HY, Liu JM, Zhang HC, Yin T, Gao SL (2008) Ri-mediated transformation of Glycyrrhiza uralensis with a squalene synthase gene (GuSQS1) for production of glycyrrhizin. Plant Mol Biol Rep 26:1–11. doi:10.1007/s11105-008-0018-7

    Article  CAS  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2011) Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol Plant 55(2):357–360. doi:10.1007/s10535-011-0054-2

    Article  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang FT, Zhang JJ, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Smith CT, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nat 444(7118):444–454. doi:10.1038/nature05329

    Article  CAS  Google Scholar 

  • Sasaki H, Takei M, Kobayashi M, Pollard RB, Suzuki F (2002) Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology 70:229–236. doi:10.1159/000069334

    Article  CAS  PubMed  Google Scholar 

  • Schaller H, Grausem B, Benveniste P (1995) Expression of the Hevea brasiliensis (H.B.K) Mull. Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109(3):761–770. doi:10.1104/pp.109.3.761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877. doi:10.1016/j.phytochem.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  • Shibata S (2000) A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120:849–862. doi:10.1002/chin.200106236

    CAS  PubMed  Google Scholar 

  • State Pharmacopoeia Committee (2010) Pharmacopoeia of China. In: Part 1. pp 80–81. Chemical Industry Press, Beijing

  • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, Grassi A, Lee C (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853. doi:10.1126/science.1136678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Rossum TG, Vulto AG (1999) Intravenous glycyrrhizin for the treatment of chronic hepatitis C: a double blind, randomized, placebo-controlled phase I/II trial. J Gastroenterol Hepatol 14:1093–1099. doi:10.1016/j.optcom.2007.03.047

    Article  PubMed  Google Scholar 

  • Wang Z, Guhling O, Yao R, Li F, Yeats TH, Rose JKC, Jetter R (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato (Solanum lycopersicum) fruit cuticular triterpenoids. Plant Physiol 155:540–552. doi:10.1104/pp.110.162883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang ZB, Park H, Lacy GH, Cramer CL (1991) Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme a reductase genes by wounding and pathogen challenge. Plant Cell 3:397–405. doi:10.1105/tpc.3.4.397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng L, Li SH, Lou ZC (1988) Morphological and histological studies of Chinese licorice. Acta Pharm Sin 23:200–208. doi: cnki: ISSN: 0513-4870.0.1988-03-007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Sheng Liu.

Additional information

Communicated by A. Chandra.

Y. Liu and X.-J. Zhan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhan, XJ., Li, WD. et al. Copy number variations of functional genes influence contents of glycyrrhizic acid in Glycyrrhiza uralensis . Acta Physiol Plant 36, 1433–1440 (2014). https://doi.org/10.1007/s11738-014-1521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1521-0

Keywords

Navigation