Skip to main content
Log in

Glutathione regulates enzymatic antioxidant defence with differential thiol content in perennial pepperweed and helps adapting to extreme environment

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Perennial pepperweed (Lepidium latifolium Linn.) is a preferred ‘phytofood’ that is available for the longest period of a year in Ladakh. Present study was undertaken to identify the mechanism of redox homeostasis and understand factors responsible for its biochemical superiority during low temperatures. Results reveal that despite the stressful environment at higher altitude, the cellular conditions are more reducing for this plant. The reducing environment is maintained by significant induction of GSH rather than changes in its oxidation state, which changes the redox potential by 12 mV. Lower ratio of NADP+/NADPH and induction of new antioxidative isozymes at Leh (3,505 m) suggest crucial role of redox regulation in adaptation. These new proteins have higher thiol content and could provide an efficient redox sensing mechanism in Lepidium latifolium that respond through GSH/NADPH redox buffers. In vitro feeding experiment suggested that GSH plays an important role in induction of antioxidant enzymes, which may not be the direct consequence of H2O2 accumulation. It needs to be further investigated whether its responsive redox metabolism has some role in its invasive growth in riparian plains of America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASC/DHA:

Reduced and oxidized form of ascorbate

DCPIP:

2,6-dichlorophenol-indophenol

DPPH:

1,1-diphenyl-2-picrylhydrazyl

GSH/GSSG:

Reduced and oxidized form of glutathione

MDA:

Malondialdehyde

NAD+/NADH:

Reduced and oxidized form of nicotinamide adenine dinucleotide

NADP+/NADPH:

Reduced and oxidized form of nicotinamide adenine dinucleotide phosphate

ROS:

Reactive oxygen species

TBA:

2-thiobarbituric acid

References

  • Abrol E, Vyas D, Koul S (2012) Metabolic shift from secondary metabolite production to induction of anti-oxidative enzymes during NaCl stress in Swertia chirata Buch-Ham. Acta Physiol Plant 34:541–546

    Article  CAS  Google Scholar 

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257

    PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MN (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    Article  PubMed  CAS  Google Scholar 

  • Aslam M, Sinha VB, Singh RK, Anandhan S, Ahmed Z, Pande V (2010) Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiol Plant 32:205–210

    Article  CAS  Google Scholar 

  • Bartoli CG, Tambussi EA, Diego F, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Ann Rev Plant Bio 56:187–220

    Article  CAS  Google Scholar 

  • Chen H, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ Exp Bot 48:119–128

    Article  Google Scholar 

  • Chronopoulou E, Madesis P, Asimakopoulou B, Dimitrios P, Tsaftaris A, Labrou NE (2012) Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris. Planta 235(6):1253–1269

    Article  PubMed  CAS  Google Scholar 

  • Colville L, Smirnoff N (2008) Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. J Exp Bot 59:3857–3868

    Article  PubMed  CAS  Google Scholar 

  • Eskling M, Arvidsson PO, Akerlund H-K (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    Article  CAS  Google Scholar 

  • Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U (2010) Trade off between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Mol Sys Biol 6:356

    Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed  CAS  Google Scholar 

  • Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants: evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220:356–363

    Article  PubMed  CAS  Google Scholar 

  • Gomez LD, Noctor G, Knight M, Foyer CH (2004) Regulation of calcium signaling and gene expression by glutathione. J Exp Bot 55:1851–1859

    Article  PubMed  CAS  Google Scholar 

  • Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol 112:1631–1640

    PubMed  CAS  Google Scholar 

  • Guleria S, Tiku AK, Singh G, Vyas D, Bhardwaj A (2011) Antioxidant activity and protective effect against plasmid DNA strand scission of leaf, bark, and Heartwood Extracts from Acacia catechu. J Food Sci 76:959–964

    Article  Google Scholar 

  • Hancock JT, Desikan R, Neill SJ, Cross AR (2004) New equations for redox and nano-signal transduction. J Theor Biol 226(1):65–68

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 12:189–198

    Article  Google Scholar 

  • Hultén E, Fries M (eds) (1986) Atlas of North European vascular plants, part I-III, maps and commentaries. Koeltz Scientific books, Germany

    Google Scholar 

  • Jubany-Mari T, Alegre-Batlle L, Jiang K, Feldman LJ (2010) Use of a redox-sensitive GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Lett 584:889–897

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulate the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Kornas A, Kuźniak E, Slesak I, Miszalski Z (2010) The key role of the redox status in regulation of metabolism in photosynthesizing organisms. Acta Biochem Pol 57:143–151

    CAS  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Rad Biol Med 40:2155–2165

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1962) A sulphydryl-disulfide hypothesis of frost injury and resistance in plants. J Theor Biol 3:355–391

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts I mechanisms of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33:65–77

    Article  PubMed  CAS  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Isaakidis-Bourguet E, Renou J-P, Noctor G (2010) Arabidopsis glutathione reductase I plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic and jasmonic acid signalling pathways. Plant Physiol 153(1144):1160

    Google Scholar 

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navarro E, Alonso J, Rodriguez R, Trujillo J, Boada J (1994) Diuretic action of an aqueous extract of Lepidium latifolium L. J Ethnopharmacol 41:65–69

    Article  PubMed  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouchi S, Han Y, Neukermans J, Marquez–Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Pal Murugan M, Raj J, Kumar PG, Gupta S, Singh SB (2010) Phytofoods of Nubra valley, Ladakh-The cold desert. Indian J Trad Knowl 9(2):303–308

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of non indigenous species in the United States. BioScience 50:53–65

    Article  Google Scholar 

  • Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Bukhov NG, Tajmir-Riahi H, Carpentier R (2003) Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes. Biochemistry 42:11839–11845

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Hale BA, Ormrod DP (1995) Amelioration of Ozone-lnduced oxidative damage in wheat plants grown under high carbon dioxide role of antioxidant enzymes. Plant Physiol 109:421–432

    PubMed  CAS  Google Scholar 

  • Rollins RC (1993) The Cruciferae of Continental North America. Stanford University Press, Stanford

    Google Scholar 

  • Sawhney SK, Singh R (eds) (2009) Introductory practical biochemistry, 2nd edn. Narosa Publishing House, New Delhi

    Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med 30(11):1191–1212

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Simone H (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Schultze-Motel W (ed) ((1986)) Lepidium latifolium. Illustrierte Flora von Mittel-europa, 3rd edn. Verlag Paul Parey, Berlin

    Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Royal Soc 355:1455–1464

    CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 50-dithiobis(2nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Ames

    Google Scholar 

  • Sonnentag O, Detto M, Runkle BRK, Teh YA, Silver WL, Kelly M, Baldocchi DD (2011) Carbon dioxide exchange of a pepperweed (Lepidium latifolium L.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration? J Geophys Res 116:G01021. doi:10.1029/2010JG001522

  • Tabassum N, Ahmad F (2011) Role of natural herbs in the treatment of hypertension. Pharmacogn 9:30–34

    Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  PubMed  CAS  Google Scholar 

  • Vyas D, Kumar S (2005a) Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis(L.) O. Kuntze.). Biochem Biophys Res Comm 329:831–838

    Article  PubMed  CAS  Google Scholar 

  • Vyas D, Kumar S (2005b) Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physio Biochem 43:383–388

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Young JA, Turner CE, James LF (1995) Perennial pepperweed. Rangelands 17:121–123

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank anonymous reviewers for suggesting necessary changes in improving the quality of manuscript. Authors thank the Director, IIIM, Jammu for providing necessary facilities to carry out the work. Authors are grateful to the Council of Scientific and Industrial Research (CSIR), Government of India, for financial support under CSIR- networking project (BSC-0109) on ‘Plant Diversity: Studying adaptation biology and understanding/exploiting medicinally important plants for useful bioactives (SIMPLE)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Vyas.

Additional information

Communicated by L. Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, T., Bhat, H.A., Raina, A. et al. Glutathione regulates enzymatic antioxidant defence with differential thiol content in perennial pepperweed and helps adapting to extreme environment. Acta Physiol Plant 35, 2501–2511 (2013). https://doi.org/10.1007/s11738-013-1286-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1286-x

Keywords

Navigation