Skip to main content
Log in

Variability of phenolic composition and biological activities of two Tunisian halophyte species from contrasted regions

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present study consists in evaluating the inter- and intraspecific variability of phenolic contents and biological capacities of Limoniastrum monopetalum L. and L. guyonianum Boiss. extracts. Ultimately, they were subjected to HPLC for phenolic identification. Results showed a great variation of phenolic content as function of species and localities. In fact, L. guyonianum extracts (El Akarit) contained the highest polyphenol (57 mg GAE g−1 DW), flavonoid (9.47 mg CE g−1 DW) and condensed tannin contents (106.58 mg CE g−1 DW). These amounts were accompanied by the greatest total antioxidant activity (128.53 mg GAE g−1 DW), antiradical capacity (IC50 = 4.68 μg/ml) and reducing power (EC50 = 120 μg/ml). In addition, L. monopetalum and L. guyonianum extracts exhibited an important and variable antibacterial activity with a diameter of inhibition zone ranging from 6.00 to 14.83 mm. Furthermore, these extracts displayed considerable antifungal activity. L. monopetalum extracts (Enfidha) showed the strongest activity against Candida glabrata and C. krusei with a diameter exceeding 12 mm. The phytochemical investigation of these extracts confirmed the variability of phenolic composition, since the major phenolic compound varied as a function of species and locality. These findings suggest that these two halophytes may be a new source of natural antioxidants that are increasingly important for human consumption, as well as for agro-food, cosmetic and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

IC50 :

Inhibition concentration at 50 %

EC50 :

Effective concentration at which the absorbance was 0.5

BHT:

Butylated hydroxytoluene

GAE:

Gallic acid equivalents

CE:

Catechin equivalents

MeOH:

Methanol

TFA:

Trifluoroacetic acid

MeCN:

Acetonitrile

ATCC:

American type culture collection

NCIMB:

National Collection of Industrial Marine and Food Bacteria

DH:

Department of Agriculture

CIP:

Collection Institut Pasteur

MR:

Methicillin resistant

EGCG:

Epigallocatechin-3-O-gallate

References

  • Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, Rio JA, Otuno A, Quirin KW, Gerard D (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis and antioxidant activity. J Agric Food Chem 51:4247–4253

    Article  PubMed  Google Scholar 

  • Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B (2008) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biol 331:48–55

    Article  PubMed  CAS  Google Scholar 

  • Carbone K, Giannini B, Picchi V, Scalzo RL, Cecchini F (2011) Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chem 127:493–500

    Article  PubMed  CAS  Google Scholar 

  • Carvalho IS, Cavacoa T, Brodelius M (2011) Phenolic composition and antioxidant capacity of six artemisia species. Ind Crop Prod 33:382–388

    Article  CAS  Google Scholar 

  • Chaieb M, Boukhris M (1998) Flore succincte et illustrée des zones arides et sahariennes de Tunisie. (eds) Association pour la protection de la nature et de l’environnement, Sfax, p 67

  • Dasgupta N, De B (2007) Antioxidant activity of some leafy vegetables of India: a comparative study. Food Chem 101:471–474

    Article  CAS  Google Scholar 

  • de Rezende AAA, Graf U, da Rosa Guterresa Z, Kerr WE, Spanó MA (2009) Protective effects of proanthocyanidins of grape (Vitis vinifera L.) seeds on 3 DNA damage induced by doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol 47:1466–1472

    Article  PubMed  Google Scholar 

  • Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  PubMed  CAS  Google Scholar 

  • Diouf PN, Stevanovic T, Cloutier A (2009) Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chem 113:897–902

    Article  CAS  Google Scholar 

  • El Shaer HM (2010) Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Res 91:3–12

    Article  Google Scholar 

  • Falleh H, Ksouri R, Oueslati S, Guyot S, Magné C, Abdelly C (2009) Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem Toxicol 47:2308–2313

    Article  Google Scholar 

  • Gao CY, Lu YH, Tian CR, Xu JG, Guo XP, Zhou R, Hao G (2011) Main nutrients, phenolics, antioxidant activity, DNA damage protective effect and microstructure of Sphallerocarpus gracilis root at different harvest time. Food Chem 127:615–622

    Article  PubMed  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:2090–2097

    Article  PubMed  CAS  Google Scholar 

  • Hosni K, Msaada K, Ben Taârit M, Marzouk B (2011) Phenological variations of secondary metabolites from Hypericum triquetrifolium Turra. Biochem Syst Ecol 39:43–50

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48:181–189

    Article  CAS  Google Scholar 

  • Jaleel CA, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. S Afr J Bot 74:126–132

    Article  Google Scholar 

  • Kamatou GPP, Viljoen AM, Steenkamp P (2010) Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem 119:684–688

    Article  CAS  Google Scholar 

  • Kang WS, Lim IH, Yuk DY, Chung KH, Park JB, Yoo HS, Yun YP (1999) Antithrombotic activities of green tea catechins and (−)-epigallocatechin gallate. Thromb Res 96:229–237

    Article  PubMed  CAS  Google Scholar 

  • Karou D, Dicko MH, Simpore J, Traore AS (2005) Antioxidant and antimicrobial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr J Biotechnol 4:823–828

    CAS  Google Scholar 

  • Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Koyro H-W, Abdelly C (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145

    Article  Google Scholar 

  • Lee J, Martin RR (2009) Influence of grapevine leaf roll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Phenolics. Food Chem 112:889–896

    Article  CAS  Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crop Prod 33:84–88

    Article  CAS  Google Scholar 

  • Macheix JJ, Fleuriet A, Jay-Allemand C (2005) Les composes phénoliques des végétaux, un exemple de métabolites secondaires d’importance économique, ed Presses Polytechniques et Universitaires Romandes, CH-1015 Lausanne

  • Mandel SA, Weinreb O, Amit T, Youdim MBH (2004) Cell signalling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    Article  PubMed  CAS  Google Scholar 

  • Medini F, Ksouri R, Falleh H, Megdiche W, Trabelsi N, Abdelly C (2011) Effects of physiological stage and solvent on polyphenol composition, antioxidant and antimicrobial activities of Limonium densiflorum. J Med Plants Res 5:6719–6730

    CAS  Google Scholar 

  • Meot-Duros L, Le Floch G, Magné C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262

    Article  PubMed  Google Scholar 

  • Oh M-M, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578–583

    Article  PubMed  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of the browning reaction: antioxidative activities of 599 browning reaction. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguliar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  PubMed  CAS  Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    Article  PubMed  CAS  Google Scholar 

  • Romani A, Ieri F, Turchetti B, Mulinacci N, Vincieri FF, Buzzini P (2006) Analysis of condensed and hydrolysable tannins from commercial plant extracts. J Pharm Biomed Anal 41:415–420

    Article  PubMed  CAS  Google Scholar 

  • Romano M, Lograno MD (2009) Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. Eur J Pharmacol 608:48–53

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi MDM, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

    Article  PubMed  Google Scholar 

  • Shikanga EA, Combrinck S, Regnier T (2010) South African Lippia herbal infusions: total phenolic content, antioxidant and antibacterial activities. S Afr J Bot 76:567–571

    Article  Google Scholar 

  • Sun B, Richardo-da-Silvia JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  • Tadeg H, Mohammed E, Asres K, Gebre-Mariam T (2005) Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders. J Ethnopharmacol 2:168–175

    Article  Google Scholar 

  • Tedeschi E, Suzuki H, Menegazzi M (2002) Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann NY Acad Sci 973:435–437

    Article  PubMed  CAS  Google Scholar 

  • Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci Technol 43:632–639

    Article  CAS  Google Scholar 

  • Trabelsi N, Falleh H, Jallali I, Ben Daly A, Hajlaoui H, Smaoui A, Ksouri R, Abdelly C (2012a) Variation of phenolic composition and biological activities in Limoniastrum monopetalum L. organs. Acta Physiol Plant 34:87–96

    Article  CAS  Google Scholar 

  • Trabelsi N, Oueslati S, Falleh H, Waffo-Téguo P, Papastamoulis Y, Mérillon J-M, Abdelly C, Ksouri R (2012b) Isolation of powerful antioxidants from the medicinal halophyte Limoniastrum guyonianum. Food Chem 135:1419–1424

  • Xu Y, J-j Zhang, Xiong L, Zhang L, Sun D, Liu H (2009) Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J Nutr Biochem 8:741–748

    Google Scholar 

  • Zarrouk M, El Almi H, Ben Youssef N, Sleimi N, Smaoui A, Ben Miled D, Abdelly C (2003) Lipid composition of local halophytes seeds: Cakile maritima, Zygophyllum album and Crithmum maritimum. In: Lieth H (ed) Cash crop halophytes: recent studies. 10 years after the Al Ain. Kluwer Academic Publishers Group, Dordrecht, p 121–126

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR10CBBC02), by the Tunisian–French “Comité Mixte de Coopération Universitaire” (CMCU) network # 08G0917 and by the SATREPES Project: “Valorization of Bio-resources in Semi-Arid and Arid Land for Regional Development”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najla Trabelsi.

Additional information

Communicated by J. V. Jorrin-Novo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabelsi, N., Waffo-Téguo, P., Snoussi, M. et al. Variability of phenolic composition and biological activities of two Tunisian halophyte species from contrasted regions. Acta Physiol Plant 35, 749–761 (2013). https://doi.org/10.1007/s11738-012-1115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1115-7

Keywords

Navigation