Skip to main content
Log in

Effects of overexpression of four Populus wound-inducible genes in Arabidopsis on its resistance against Plutella xylostella L

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Wounding- and herbivore-inducible proteins are potential resources to enhance the resistance to insect pests in transgenic plants. In order to analyze the effects of four such highly inducible genes of Populus, two genes encoding trypsin inhibitors (PtdKTI5 from hybrid poplar, Populus trichocarpa × P. deltoides and PtKTI2 from trembling aspen, Populus tremuloides Michx.), a wound-inducible gene (PtdKTI5 from hybrid poplar, Populus trichocarpa × P. deltoids) and a stress-responsive gene (PtdPOP3 from hybrid poplar, Populus trichocarpa × P. deltoids), we have produced transgenic Arabidopsis thaliana expressing these genes individually under the control of the CaMV35S promoter by Agrobacterium-mediated transformation. Stable integration and high transcriptional levels of the target cDNAs and their inheritance in transgenic Arabidopsis lines were confirmed by genomic PCR, quantitative PCR and T3 progeny segregation analysis. In the no-choice bioassays, all the four types of transgenic Arabidopsis confer different levels of insect resistance against Plutella xylostella L. larvae at various stages and the PtdKTI5 overexpressing plants turned out to be most effective. Our data indicated that these four Populus defense-related genes under investigation could be potentially exploited for the protection against P. xylostella L. in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants overexpressing two families of plant proteinase inhibitors. Plant Mol Biol 57:189–202

    Article  PubMed  CAS  Google Scholar 

  • Amirhusin B, Shade RE, Koiwa H, Hasegawa PM, Bressan RA, Murdock LL, Zhu-Salzman K (2007) Protease inhibitors from several classes work synergistically against Callosobruchus maculatus. J Insect Physiol 53:734–740

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw HD Jr, Hollick JB, Parsons TJ, Clarke HR, Gordon MP (1990) Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14:51–59

    Article  PubMed  CAS  Google Scholar 

  • Broadway RM (1995) Are insects resistant to plant proteinase inhibitors? J Insect Physiol 41:107–116

    Article  CAS  Google Scholar 

  • Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Davis JM, Egelkrout EE, Coleman GD, Chen TH, Haissig BE, Riemenschneider DE, Gordon MP (1993) A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol Biol 23:135–143

    Article  PubMed  CAS  Google Scholar 

  • De Leo F, Bonade-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118:997–1004

    Article  PubMed  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015

    Article  PubMed  CAS  Google Scholar 

  • Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Haruta M, Major IT, Christopher ME, Patton JJ, Constabel CP (2001) A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Mol Biol 46:347–359

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681

    Google Scholar 

  • Major IT, Constabel CP (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146:888–903

    Article  PubMed  CAS  Google Scholar 

  • Marchetti S, Delledonne M, Fogher C, Chiaba C, Chiesa F, Savazzini F, Giordano A (2000) Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet 101:519–526

    Article  CAS  Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Laing WA, Christeller JT, White DW (1994) Posttranslational modification of an isoinhibitor from the potato proteinase inhibitor II gene family in transgenic tobacco yields a peptide with homology to potato chymotrypsin inhibitor I. Plant Physiol 106:771–777

    Article  PubMed  CAS  Google Scholar 

  • Meade T, Hare JD (1993) Effects of differential host plant consumption by Spodoptera exigua (Lepidoptera: Noctuidae) on Bacillus thuringiensis efficacy. Environ Entomol 22:432–437

    Google Scholar 

  • Pelah D, Shoseyov O, Altman A (1995) Characterization of BspA, a major boiling-stable, water-stress-responsive protein in aspen (Populus tremula). Tree Physiol 15:673–678

    PubMed  CAS  Google Scholar 

  • Pelah D, Shoseyov O, Altman A, Bartels D (1997a) Water-stress response in aspen (Populus tremula): differential accumulation of dehydrin, sucrose synthase, GAPDH homologues, and soluble sugars. J. Plant Physiol 151:96–100

    Article  CAS  Google Scholar 

  • Pelah D, Wang WX, Altman A, Shoseyov O, Bartels D (1997b) Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99:153–159

    Article  CAS  Google Scholar 

  • Saarikoski P, Clapham D, von Arnold S (1996) A wound-inducible gene from Salix viminalis coding for a trypsin inhibitor. Plant Mol Biol 31:465–478

    Article  PubMed  CAS  Google Scholar 

  • Silva-Torres CS, Pontes IV, Torres JB, Barros R (2010) New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotrop Entomol 39:835–838

    Article  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Fang Z, Dicke M, van Loon JJ, Jongsma MA (2009) The diamondback moth, Plutella xylostella, specifically inactivates mustard trypsin inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochem Mol Biol 39:55–61

    Article  PubMed  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (30800875 and 31100493), Tianjin Research Program of Application Foundation and Advanced Technology (10JCYBJC08600) and Tianjin Science & Technology Pillar Program (11ZCGYNC01400). The authors also wish to thank C. Peter Constabel for supplying the plasmid constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehua Wang.

Additional information

Communicated by B. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Wang, J., Hu, R. et al. Effects of overexpression of four Populus wound-inducible genes in Arabidopsis on its resistance against Plutella xylostella L. Acta Physiol Plant 34, 1583–1588 (2012). https://doi.org/10.1007/s11738-012-0938-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0938-6

Keywords

Navigation