Skip to main content
Log in

Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Heavy metals (HMs) are environmental pollutants of great concern to humans because of their high potential toxicity. Lead is a HM that is present in the soil in very small amounts, but anthropogenic activities have increased its content in some locations, which can make these areas unproductive or inappropriate for crop production. However, there are some plants that can grow in contaminated soils and, thus, can be useful for the removal or stabilisation of such contaminants. In addition, plants that are not able to tolerate high concentrations of HMs in the soil can become tolerant or increase their performance when associated with arbuscular mycorrhizal (AM) fungi. Accordingly, this study was carried out to verify whether the inoculation of Glomus etunicatum, an AM fungus species, in Calopogonium mucunoides would influence plant tolerance to increasing concentrations of Pb in the soil. The experimental design was completely randomised, in a 2 × 4 factorial design, and the treatments consisted of inoculation (or not) with the AM fungus, G. etunicatum, and the addition of four Pb concentrations (0, 250, 500 or 1,000 mg kg−1) to the soil. The results showed that the association of C. mucunoides with G. etunicatum promoted biomass production, and nutrient uptake (P, S and Fe) was also positively influenced by mycorrhization. The malondialdehyde content was higher in non-mycorrhizal leaves, suggesting a reduction in the damage to membranes by lipid peroxidation in plants associated with mycorrhizae. However, the Pb concentration in the shoots did not differ between the mycorrhizal and non-mycorrhizal plants. The results of our study suggest that the AM symbiosis can be considered very effective in contributing to the tolerance of C. mucunoides to Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinci IE, Akinci S, Yilmaz K (2010) Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. Afr J Agric Res 5(6):416–423

    Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an Arbuscular Mycorrhiza. Plant Physiol 149(1):549–560. doi:10.1104/pp.108.129866

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Silveira APD (2008) Mycorrhiza influence on maize development under Cd stress and P supply. Braz J Plant Physiol 20:39–50

    Google Scholar 

  • Andrade SAL, Abreu CA, Abreu MF, Silveira APD (2003) Interação de chumbo, da saturação por bases do solo e de micorriza arbuscular no crescimento e nutrição mineral da soja. R Bras Ci Solo 27:945–954

    Article  CAS  Google Scholar 

  • Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26(2):123–131

    Article  Google Scholar 

  • Andrade SAL, Gratao PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75(10):1363–1370. doi:10.1016/j.chemosphere.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:18–207

    Article  Google Scholar 

  • Arriagada CA, Herrera MA, Ocampo JA (2005) Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air Soil Pollut 166:31–47

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, New York, pp 227–297

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778. doi:10.1093/jxb/eri197

    Article  PubMed  CAS  Google Scholar 

  • Bekiaroglou P, Karataglis S (2002) The effect of lead and zinc on Mentha spicata. J Agron Crop Sci 188:201–205

    Article  CAS  Google Scholar 

  • Calegari A, Mondardo A (1993) Adubação verde no sul do Brasil, 2 edn, p 346

  • Calmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plantarum 83:463–468

    Article  Google Scholar 

  • Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60(5):665–671

    Article  PubMed  CAS  Google Scholar 

  • Dey SK, Dey J, Patra S, Pothal D (2007) Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19(1):53–60

    Article  CAS  Google Scholar 

  • Freitas EVS, Nascimento CWA, Biondi CM, Silva JPS, Souza AP (2009) Dessorção e lixiviação de chumbo em espodossolo tratado com agentes quelantes. R Bras Ci Solo 33:517–525

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospect of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–534

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414

    Article  CAS  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:482–500

    Article  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122. doi:10.1007/s00425-006-0225-0

    Article  PubMed  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544. doi:10.1016/j.cheniosphere.2007.08.043

    Article  PubMed  CAS  Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PT, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64

    Google Scholar 

  • Gross J, Stein RJ, Fett-Neto AG, Fett JP (2003) Iron homeostasis related genes in rice. Genet Mol Biol 26:477–497

    Article  CAS  Google Scholar 

  • Han YL, Huang SZ, Gu JG, Qiu S, Chen JM (2008) Tolerance and accumulation of lead by species of Iris L. Ecotoxicology 17(8):853–859. doi:10.1007/s10646-008-0248-3

    Article  PubMed  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364. doi:10.1007/s12229-009-9036-x

    Article  Google Scholar 

  • Ke WS, Xiong ZT, Chen SJ, Chen JJ (2007) Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot 59(1):59–67. doi:10.1016/j.envexpbot.2005.10.007

    Article  CAS  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259(1):201–208. doi:10.1023/b:plso.0000020972.18777.99

    Article  CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156

    Article  PubMed  Google Scholar 

  • Li A, Wang X, Leseberg CH, Jia J, Mao L (2008) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav 3(9):654–656

    Article  PubMed  Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants (vol 3, pg 153, 2000). Curr Opin Plant Biol 3(5):435–435

    Google Scholar 

  • Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40(5):1019–1027. doi:10.1016/j.soilbio.2007.11.014

    Article  CAS  Google Scholar 

  • Muller LAH, Craciun AR, Ruytinx J, Lambaerts M, Verbruggen N, Vangronsveld J, Colpaert JV (2007) Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations. Mycorrhiza 17:571–580. doi:10.1007/s00572-007-0134-5

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169):134–139

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K (1981) Preparation, analysis and certification of pepperbush standard reference material. Natl Inst Environ Stud NIES 18:91–93

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO 6(6):497–501

    Google Scholar 

  • Pompeu GB, Gratão PL, Vitorello VA, Azevedo RA (2008) Antioxidant isoenzyme responses to nickel-induced stress in tobacco cell suspension culture. Sci Agric 65:548–552

    Article  CAS  Google Scholar 

  • Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotechnol 4(4):332–345

    Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243. doi:10.1104/pp.108.131524

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  PubMed  Google Scholar 

  • Seiffert NF, Zimmer AH, Schunke RM, Behling-Miranda CH (1985) Nitrogen recycling in mixed pastures of Calopogonium mucunoides and Brachiaria decumbens. Pesqui Agropecu Bras 20:529–544

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Google Scholar 

  • Soares CRFS, Siqueira JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44(6):833–841

    Google Scholar 

  • Stolt JP, Sneller FEC, Bryngelsson T, Lundborg T, Schat H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49(1):21–28

    Article  CAS  Google Scholar 

  • Sudova R, Vosatka M (2007) Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant Soil 296(1–2):77–83. doi:10.1007/s11104-007-9291-8

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655. doi:10.1016/s0168-9452(03)00022-0

    Article  CAS  Google Scholar 

  • Wang CR, Wang XR, Tian Y, Xue YG, Xu XH, Sui YX, Yu HX (2008) Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotox Environ Safe 71(3):685–691. doi:10.1016/j.ecoenv.2008.01.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Adrián López de Andrade.

Additional information

Communicated by J. Zwiazek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, L.A., de Andrade, S.A.L., de Souza, S.C.R. et al. Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides . Acta Physiol Plant 34, 523–531 (2012). https://doi.org/10.1007/s11738-011-0849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0849-y

Keywords

Navigation