Skip to main content
Log in

Identification and characterization of differentially expressed genes from tobacco roots after decapitation

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nicotine is the major alkaloid in tobacco and its biosynthesis is regulated by a variety of factors. Topping, as an important agronomic factor, can induce the nicotine biosynthesis increase. Some key nicotine biosynthesis-related genes and the framework of nicotine biosynthesis pathway have been well studied, but the details of nicotine biosynthesis pathway are not well understood now. To investigate the genes expressed after tobacco topping, we constructed a suppression subtractive hybridization library using cDNA from control tobacco plants as driver and those from topped tobacco plants as tester. The insert size of positive clones was 200–1,000 bp confirmed by PCR. After differential screening, 560 significantly differently expressed clones among 1,950 positive clones were acquired, sequenced and 273 high quality expressed sequence tags (ESTs) were acquired. The results of nucleotide blast homological analysis indicated that these ESTs mainly involved in alkaloid biosynthesis (4%), plant hormone metabolism (3%), signaling/transcription (18%), stress/defense (32%), protein metabolism (9%), carbon metabolism (6%), other metabolism (15%) and function unknown (13%). The expression of selected genes was analyzed by reverse transcription polymerase chain reaction and RNA gel blot hybridization, and the result indicated that their transcription amount increased after tobacco topping. NtNAC-R1was in silico cloned, and the expression level of NtNAC-R1 increased at 12 and 24 h in tobacco roots after topping, which indicated that NtNAC-R1 may play an important role in the signal transduction after tobacco topping. In addition to many previously reported nicotine biosynthesis-related genes, some new genes, such as transcription factors related to nicotine biosynthesis/regulation and the members of plant hormone pathway, were discovered in our library. The results contribute new data to the list of possible candidate genes involved in nicotine biosynthesis and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SSH:

Suppression subtractive hybridization

PMT:

Putrescine N-methyltransferase

ODC:

Ornithine decarboxylase

ADC:

Arginine decarboxylase

TD:

Threonine deaminase

NtMFP:

Nicotiana tabacum multifunctional protein

CaM:

Calmodulin

SOD:

Superoxide dismutase

GTase:

Glycosyltransferase

MDH:

Malate dehydrogenase

GAD:

Glutamate decarboxylase

References

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Google Scholar 

  • Baldwin IT (1999) Inducible nicotine production in native Nicotiana as an example of phenotypic plasticity. J Chem Ecol 25:3–30

    Article  CAS  Google Scholar 

  • Baldwin IT, Zhang ZP, Diab N, Ohnmeiss TE, McCloud ES, Lynds GY et al (1997) Quantification, correlations, and manipulations of wound induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201:397–404

    Article  CAS  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  CAS  Google Scholar 

  • Cane KA, Mayer M, Lidgett AJ, Michael AJ, Hamill JD (2005) Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana tabacum in response to wounding of aerial tissues and methyl jasmonate treatment of cultured roots. Funct Plant Biol 32:305–320

    Article  CAS  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot (Lond) 95:901–915

    Article  CAS  Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53:87–105

    Article  PubMed  CAS  Google Scholar 

  • Dammann C, Rojo E, Sánchez-Serrano JJ (1997) Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J 11:773–782

    Article  PubMed  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Caroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  PubMed  CAS  Google Scholar 

  • Ernst HA, Olsen AN, Skriver K, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303

    Article  PubMed  CAS  Google Scholar 

  • Eschrich W (1980) Free space invertase, its possible role in phloem unloading. Berichte der Deutschen Botanischen Gesellschaft 93:363–378

    CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J et al (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    PubMed  CAS  Google Scholar 

  • Foyer CH (2001) Prospects for enhancement of the soluble antioxidants, ascorbate and glutathione. Biofactors 15(2–4):75–78

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Genoud T, Metraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507

    Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90(4):1629–1633

    Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285

    Article  CAS  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    Article  PubMed  CAS  Google Scholar 

  • Hirotani M, Kuroda R, Suzuki H, Yoshikawa T (2000) Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltarnsferase from hairy root cultures of Scutellaria baicalensis. Planta 210:1006–1013

    PubMed  CAS  Google Scholar 

  • Hitoshi O, Ayako O, Kimiyo N, Kwi-Mi C, Hiroshi S (2008) A stress-responsive multifunctional protein involved in β-oxidation in tobacco plants. Plant Biotechnol 25(5):503–508

    Article  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Kojima H, Ichihara A, Nakamura K (1998a) An mRNA of tobacco cell, which is rapidly inducible by methyljasmonate in the presence of cycloheximide, codes for a putative glycosyltransferase. Plant Cell Physiol 39:202–211

    PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T et al (1998b) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Katoh A, Hashimoto T (2004) Molecular biology of pyridine nucleotide and nicotine biosynthesis. Front Biosci 9:1577–1586

    Article  PubMed  CAS  Google Scholar 

  • Kidd SK, Melillo AA, Lu RH, Deborah GR, Norihito K, Kenko U et al (2006) The A and B loci in tobacco regulate a network of stress response genes, few of which are associated with nicotine biosynthesis. Plant Mol Biol 60:699–716

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Johnson JD, Walsh MP, van Lierop JE, Sutherland C, Xu A et al (2000) Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem J 350:299–306

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Souer E, Verpoorte R, Hoge JHC (1993) Isolation of cytochrome P450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy. Plant Mol Biol 22:379–383

    Article  PubMed  CAS  Google Scholar 

  • Mönke G, Sonnewald U (1995) Elevated mRNA levels of the ribosomal protein L19 and a calmodulin-like protein in assimilate-accumulating transgenic tobacco plants. Plant Physiol 107(4):1451–1452

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T et al (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Newman Y, Ring SG, Colaco C (1993) The role of trehalose and other carbohydrates in biopreservation. Biotechnol Genet Eng Rev 11:263–294

    PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the postgenomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • País SM, González MA, Téllez-Inon MT, Capiati DA (2009) Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses. Planta 230:13–25

    Article  PubMed  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J et al (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  PubMed  CAS  Google Scholar 

  • Reed DG, Jelesko JG (2004) The A and B loci of Nicotiana tabacum have non-equivalent effects on the mRNA levels of four alkaloid biosynthetic genes. Plant Sci 167:1123–1130

    Article  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  PubMed  CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Titarenko E, León J, Berger S, Vancanneyt G, Sánchez-Serrano JJ (1998) Reversible protein phosphorylation regulates jasmonic acid-dependent and independent wound signal transduction pathways in Arabidopsis thaliana. Plant J 13:153–165

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Murakoshi I (1998) Genes in alkaloid metabolism. In: Roberts MF, Wink M (eds) Alkaloids: biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 147–157

    Google Scholar 

  • Samach A, Broday L, Hareven D, Lifschitz E (1995) Expression of an amino-acid biosynthesis gene in tomato flowers: developmental up-regulation and MeJA response are parenchyma specific and mutually compatible. Plant J 8:391–406

    Article  PubMed  CAS  Google Scholar 

  • Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SJ, Murphy KJ, Birch CD, Hamil JD (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44:603–617

    Article  PubMed  CAS  Google Scholar 

  • Sonnemann J, Bäuerle A, Winkler T, Mutzel R (1991) A ribosomal calmodulin-binding protein from Dictyostelium. J Biol Chem 266:23091–23096

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  PubMed  CAS  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:1074–1080

    Article  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) cDNA cloning of carrot extracellular b-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  PubMed  Google Scholar 

  • Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001) Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco culture cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem 268:4086–4094

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A et al (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  PubMed  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • van der Merwe MJ, Osorio S, Moritz T, Nunes-Nesi A, Fernie AR (2009) Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms. Plant Physiol 149:653–669

    Article  PubMed  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986) The regulation of enzyme activities of the nicotine pathway in tobacco. Physiol Plant 68:667–672

    Article  CAS  Google Scholar 

  • Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  PubMed  CAS  Google Scholar 

  • Wang JM, Sheehan M, Brookman H, Timko MP (2000) Characterization of cDNAs differentially expressed in roots of tobacco (Nicotiana tabacum cv. Burley 21) during the early stages of alkaloid biosynthesis. Plant Sci 158:19–32

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Shi QM, Li WQ, Niu JF, Li CJ, Zhang FS (2008) Nicotine concentration in leaves of flue-cured tobacco plants as affected by removal of the shoot apex and lateral buds. J Integr Plant Biol 50:958–964

    Article  PubMed  CAS  Google Scholar 

  • Willits CO, Swan Margaret L, Connelly JA, Brice BA (1950) Spectrophotometric determination of nicotine. Anal Chem 22:430–433

    Google Scholar 

  • Woo HH, Hawes MC (1997) Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of Pisum sativum L. Plant Mol Biol 35(6):1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Timko MP (2004) Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol 55:743–761

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of National Natural Science Foundation of China (30971704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiQun Liu.

Additional information

Communicated by Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Ma, L., Wang, F. et al. Identification and characterization of differentially expressed genes from tobacco roots after decapitation. Acta Physiol Plant 34, 479–493 (2012). https://doi.org/10.1007/s11738-011-0845-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0845-2

Keywords

Navigation