Skip to main content
Log in

Plant peroxidases: biomarkers of metallic stress

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The term “peroxidase” designs a group of hemoproteins with a wide structural variability. These enzymes catalyze the redox reaction between hydrogen peroxide and some reductors. They can be found in animals, plants and microorganisms. In plants, peroxidases are involved in numerous cellular processes such as development and stress responses. In fact, they are involved in growth regulation by controlling hormonal and cell wall metabolism and antioxidant defense. On the other hand, these enzymes are considered as a biomarker indicating biotic and abiotic stresses. Under metallic stress conditions, the quantitative and qualitative profiles of peroxidases are generally modified. Such modulations could prove the major role played by these enzymes in the defense mechanism. In this paper, we discussed the variation of isoperoxidases behavior under metallic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul Jaleel C (2009) Soil salinity regimes alters antioxidant enzyme activities in two varieties of Catharanthus roseus. Bot Res Int 2(2):64–68

    CAS  Google Scholar 

  • Abercrombie J, Halfhill M, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CNJ (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87

    Article  PubMed  Google Scholar 

  • Andrews J, Adams SR, Burton KS, Edmondson RN (2002) Partial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin. J Exp Bot 53(379):2393–2399

    Article  PubMed  CAS  Google Scholar 

  • Arnison PG, Boll WG (1975) Isoenzymes in cell cultures of bush bean (Phaseolus vulgaris c.v. contender). Isoenzymatic changes during the callus cycle and differences between stock cultures. Can J Bot 53:261–271

    Article  CAS  Google Scholar 

  • Barceló J, Vázkez MD, Pschenreder CH (1988) Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot Acta 101:254–261

    Google Scholar 

  • Bouazizi H, Jouili H, El Ferjani E (2007) Copper-induced oxidative stress in maize shoots (Zea mays L.): H2O2 accumulation and peroxidases modulation. Acta Biol Hung 58(2):209–218

    Article  PubMed  Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2008) Effect of copper excess on H2O2 accumulation and peroxidases activities in bean roots. Acta Biol Hung 59(2):233–245

    Article  PubMed  Google Scholar 

  • Castillo FJ (1992) Peroxidases and stress. In: Greppin M, Penel C, Gaspar T (eds) Molecular biochemical and physiological aspects of plant peroxidases. University of Geneva, Geneva, pp 209–220

    Google Scholar 

  • Chakarabotry U, Dutta S, Chakarabotry BN (2002) Response of tea plants to water stress. Bio Plantarum 45:557–562

    Article  Google Scholar 

  • Chaoui A, Jarrar B, El Ferjani E (2004) Effects of cadmium and copper on peroxidase NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J. Plant Physiol 161:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Schopfer P (1999) Hydroxyl-radical production in physiological reactions: A novel function of peroxidase. Eur J Biochem 260:726–735

    Article  PubMed  CAS  Google Scholar 

  • Chen EL, Chen YA, Chen LM, Liu ZH (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 444:439

    Article  Google Scholar 

  • Chibbar RN, Van Huystee RB (1986) Immunochemical localization of peroxidase in cultured peanut cells. J plant Physiol 123:477–486

    CAS  Google Scholar 

  • Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60(2):391–408

    Article  PubMed  CAS  Google Scholar 

  • Cuypers A, Vangrosveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris; copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  • Ezaki B, Tsugita S, Matsumoto H (1996) Expression of a moderately anionic peroxidase induced by aluminium treatment in tobacco callus: possible involvement of peroxidase isozymes in aluminium ion stress. Physiol Plant 96:21–28

    Article  CAS  Google Scholar 

  • Fang WC, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76

    Article  PubMed  CAS  Google Scholar 

  • Farell RL, Murtagh KE, Tien M et al (1989) Physical and enzymatic properties of lignin peroxidase isozymes from Phanerochaere chrysosporium. Enzyme Microb Technol 11:322–328

    Article  Google Scholar 

  • Fecht-Christoffers M, Führs H, Braun HP, Horst WJ (2006) The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol 140:1451–1463

    Article  PubMed  CAS  Google Scholar 

  • Gaspar TH, Kevers C, Hausman JF, Faivre-Rampant O, Boyer N, Dommes J, Penel C, Greppin H (2000) Integrating phytohormone metabolism and action with primary biochemical pathways. I. Interrelationships between auxins, cytokinins, ethylene and polyamines in growth and development processes. In: Greppin H, Penel C, Broughton WJ, Strasser R (eds) Integrated plant systems. University of Geneva, Geneva, pp 209–220

    Google Scholar 

  • Gazaryon IG, Lagrimini L, Ashby AG, Thornely NF (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313:841–847

    Google Scholar 

  • Griffing LR, Fowke LC (1985) Cytochemical localization of peroxidase in soybean suspension culture cells and protoplasts ultracellular vacuole differentiation and presence of peroxidase in coated vesicles and multivesicular bodies. Protoplasma 128:22–30

    Article  Google Scholar 

  • Güngör Şat I (2008) The effect of heavy metals on peroxidase from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Afr J Biotechnol 7(13):2248–2253

    Google Scholar 

  • Haji Hosseini R, Khanlarian M, Ghorbanly M (2007) Effect of lead on germination, growth and activity of catalase and peroxidase enzyme in root and shoot of two cultivars of Brassica napus L. J Biol Sci 7(4):592–598

    Google Scholar 

  • Hancock J, Desikan R, Clarke A, Hurst R, Neill S (2002) Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiol Biochem 40:611–617

    Article  CAS  Google Scholar 

  • Hiraga S, Sazaki K, Ito H, Ohashi Y, Matsui H (2001) A large Family of class III Plant Peroxidases. Plant Cell Physiol 42(5):462–468

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Smith R, Van Huystee R (1989) Biosynthesis and localization of peanut peroxidases: a comparison of the cationic and the anionic isozymes. Plant Physiol 135:391–397

    CAS  Google Scholar 

  • Jouili H, El Ferjani E (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. C R Biologie 326:639–644

    Article  CAS  Google Scholar 

  • Jouili H, Bouazizi H, Rossignol M, Borderies G, Jamet E, et El Ferjani E (2008) Partial purification and characterization of a copper-induced anionic peroxidase of sunflower roots. Plant Physiol Biochem 46:760–767

    Article  PubMed  CAS  Google Scholar 

  • Jouili H, Bouazizi H, El Ferjani E (2010) Protein and peroxidase modulations in sunflower seedlings (Helianthus annuus L.) treated with a toxic amount of aluminium. Biol Trace Element Res 138:326–336

    Article  CAS  Google Scholar 

  • Khan MH (2007) Induction of oxidative stress and antioxidant metabolism in Calamus Tenuis leaves under chromium and zinc toxicity. Indian J Plant Physiol 12(4):353–359

    CAS  Google Scholar 

  • Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Gen Genomics 279:339–357

    Article  CAS  Google Scholar 

  • Kvaratskhelia M, Winkel C, Thornelay RN (1997) Purification and characterization of a novel class III peroxidase isoenzyme from tea leaves. Plant Physiol 114:1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85

    Article  PubMed  CAS  Google Scholar 

  • Lige B, Ma S, Van Huystee RB (2001) The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch Biochem Biophys 386:17–24

    Article  PubMed  CAS  Google Scholar 

  • Linossier G (1898) Contribution à l’étude des ferments oxydants sur la peroxydase du pus. C R Soc Biol 50:373–375

    Google Scholar 

  • Mäder M (1992) Compartmentation of peroxidase isoenzymes in plant cells. In: Penel C, Gaspar T, Greppin M (eds) Topic and detailed literature on molecular, biochemical and physiological aspects. University of Geneva, Geneva, pp 37–46

    Google Scholar 

  • Metwalli A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56(409):167–178

    Google Scholar 

  • Mika A, Buck F, Luthje S (2008) Membrane-bound class III peroxidases: identification biochemical properties and sequence analysis of isoenzymes purified from maize (Zea mays L.) roots. J Proteomics 71:412–424

    Article  PubMed  CAS  Google Scholar 

  • Mithofer A, Schultze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 566:1–5

    Article  PubMed  CAS  Google Scholar 

  • Otter T, Polle A (1994) The influence of apoplastic ascorbate on the activities of cell-wall associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L.). Plant Cell Physiol 35(8):1231–1238

    CAS  Google Scholar 

  • Pandolfini T, Gabrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Titicum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Parmar NG, Chanda SV (2005) Effects of mercury and chromium on peroxidase and IAA oxidase enzymes in the seedlings of Phaseolus vulgaris. Turk J Biol 29:15–21

    CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Plant Sci 9(11):534–540

    CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Pickering JW, Powell BL, Wender C et al (1973) Ferulic acid: a substrate for two isoperoxidases from Nicotiana tabacum tissue cultures. Phytochemistry 12:2639–2643

    Article  CAS  Google Scholar 

  • Sbartai H, Rouabhi R, Sbartai I, Berrebbah H, Djebar MR (2008) Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). Afr J Plant Sci 2(8):72–76

    Google Scholar 

  • Schönbein CP (1855) Oxidation of tetraguaiacol by oxidases in the presence of hydrogen peroxide. J Practical Chem 66:282

    Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 49:775–778

    Google Scholar 

  • Siegel BZ (1993) Plant peroxidases-an organismic perspective. Plant growth Reg 12:303–312

    Article  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van L, Vangrosveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Penel C, Greppin H (1981) Calcium requirement for the secretion of peroxidase by plant cell suspension. J Cell Sci 48:345–355

    PubMed  CAS  Google Scholar 

  • Takabe K, Takeuchi T, Sato M, Ito M, Fujita M (2001) Immunocytochemical localization of enzymes involved in lignification of the cell wall. J Plant Res 114:1021–1029

    Article  Google Scholar 

  • Tamás L, Huttová J, Mistrík I (2002) Effect of aluminium on peroxidase activity in roots of Al-sensitive and Al-resistant barley cultivars

  • Theorell H (1942) Plant peroxidase. Enzymologia 10:250

    CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene. 288:129–138

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters HMM (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  PubMed  CAS  Google Scholar 

  • Welinder KG (1979) Amino acid sequence studies of horseradish peroxidase. Eur J Biochem 96:483–502

    Article  PubMed  CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Wu F, Dong J, Jia G, Zheng S, Zhang G (2006) Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China 5(1):68–76

    CAS  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56(20):9676–9684

    Article  PubMed  CAS  Google Scholar 

  • Źróbek-Sokolnik A, Górska K, Górecki RJ (2007) Heavy metals-induced hydrogen peroxide production in tobacco cells. Pol J Nat Sci 22(2):196–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hager Jouili.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouili, H., Bouazizi, H. & El Ferjani, E. Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33, 2075–2082 (2011). https://doi.org/10.1007/s11738-011-0780-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0780-2

Keywords

Navigation