Skip to main content
Log in

Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought, salinity and cold are the major environmental factors impacting on survival and productivity of Tibetan hulless barley in Tibetan Plateau of China. Tibetan hulless barley cultivar, Tibetan Heiqingke No. 1, has developed a strong tolerance and adaptation to stresses in relation to the wild barley. The differences of dehydrin gene transcription and translation between Tibetan Heiqingke No. 1 and the wild barley under drought, salinity and low temperature stresses were investigated in the present study to figure out the putative mechanism of stress tolerance of Tibetan Heiqingke No. 1. The leaf relative water contents (RWCs) decreased more slowly in Tibetan hulless barley than the wild barley under osmotic and low temperature conditions. Electrolyte leakage, malondialdehyde and H2O2 contents increased faster in wild barley than those of Tibetan hulless barley, which indicated that cells of wild barley received more damages than Tibetan hulless barley. Furthermore, the expression of several dehydrin genes, belonging to four different classifications respectively, was also investigated. Polyclonal antibodies against dehydrins were obtained from rabbit after prokaryotic expression and purification of TDHN4, a dehydrin protein from Tibetan hulless barley. With these antibodies and dehydrin gene fragments, western blotting analysis and RT-PCR showed that Tibetan Heiqingke No. 1 accumulated higher abundance of dehydrins than stress-sensitive wild barley under all stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DHN:

Dehydrin

MDA:

Malondialdehyde

MW:

Molecular weight

RWC:

Relative water content

ROS:

Reactive oxygen species

DHN4:

Tibetan hulless barley DHN4-like protein

TB:

Tibetan hulless barley

TCA:

Trichloroacetic acid

WB:

Wild barley

References

  • Allagulova CR, Gilamov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and functions. Biochemistry (Moscow) 68:945–951

    Article  CAS  Google Scholar 

  • Beck EG, Fettig S, Knake C, Gartig K, Bhattarai T (2007) Specific and unspecific responses of plant to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1993) Molecular response to water deficit. Plant Physiol 103:1035–1040

    CAS  PubMed  Google Scholar 

  • Campbell S, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Plant Physiol 100:291–296

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23:279–286

    Article  CAS  PubMed  Google Scholar 

  • Du JB, Xi DH, Wang SY, Feng H, Sun X, Yuan S, Wang JH, Liu ZL, Xue LW, Lin HH (2008) Cloning and procaryotic expression of the dehydrin dhn4 gene from Tibetan hulless barley. J Sichuan Univ (Nat Sci Ed) 45:442–445

    Google Scholar 

  • Garnczarska M, Zalewskim T, Wojtyla Ł (2008) A comparative study of water distribution and dehydrin protein localization in maturing pea seeds. J Plant Physiol 165:1940–1946

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:518–570

    Article  Google Scholar 

  • Hu SJ (1995) An introduction to Tibet agriculture. Sichuan Science and Technology Publishing House, Sichuan

    Google Scholar 

  • Hu LX, Wang ZL, Du HM, Huang BR (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol 167:103–109

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304

    Article  CAS  Google Scholar 

  • Kaye C, Neven L, Hofig A, Li QB, Haskell D, Guy C (1998) Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116:1367–1677

    Article  CAS  PubMed  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  CAS  PubMed  Google Scholar 

  • Nimazhaxi (1998) Hulless barley and food safety in the region of plateau. Tibetan Agric Technol 20:20–25

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Olave-Concha N, Bravo LA, Ruiz-Lara S, Corcuera LJ (2005) Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Polar Biol 28:506–513

    Article  Google Scholar 

  • Pan ZF, Deng GB, Zhai XG, Wu F, Yu MQ (2007) Genetic diversity of Acid-PAGE monomeric prolamins in cultivated hulless barley (Hordeum vulgare L.) from Qinghai–Tibet plateau in China. Genet Resour Crop Evol 54:1691–1699

    Article  CAS  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC (2006) Rapid upregulation of dehydrin 3 and dehydrin 4 in response to dehydration is a characteristic of drought-tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Qian G, Han ZX, Zhao T, Deng GB, Pan ZF, Yu MQ (2007) Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. Vulgare, associated with resistance to water deficit. Aust J Agric Res 58:425–431

    Article  CAS  Google Scholar 

  • Rath A, Glibowicka M, Nadeau V, Chen G, Deber C (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106:1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Yuan S, Lin HH (2006) Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. Z Naturforsch 61c:245–250

    Google Scholar 

  • Sun X, Xi DH, Feng H, Du JB, Lei T, Liang HG, Lin HH (2009) The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings. Russ J Plant Physiol 56:348–354

    Article  CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Taketa S, Kikuchi S, Awayama T, Yamamo S, Ichii M, Kawasak S (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor Appl Genet 108:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahlid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405

    Article  CAS  PubMed  Google Scholar 

  • van Zee K, Chen FQ, Hayes PM, Close TJ, Chen THH (1995) Cold-specific induction of a dehydrin gene family member in barley. Plant Physiol 108:1233–1239

    PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui XP, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomic 6:143–156

    Article  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Xi DH, Lan LQ, Wang JH, Xu WL, Xiang BC, Lin HH (2006) Variation analysis of two cucumber mosaic viruses and their associated satellite RNAs from sugar beet in China. Virus Genes 33:293–298

    CAS  PubMed  Google Scholar 

  • Yang GF, Peng HX, Li CA, Yin HF (2001) Analysis of hydrothermal factors and presentation of ecological recovery measures in Northwest China. NW Geol 34:9–15

    Google Scholar 

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Tashi Tsering (Tibetan University) for his generously supplying us with the seeds of Tibetan Heiqingke No. 1. This work was supported by the National Key Basic Research ‘973’ Program of China (2009CB118500), National Nature Science Foundation of China (30970214, 30670166 and 30800071), and Project of Chinese Ministry of Education (108110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hui Lin.

Additional information

Communicated by R. Aroca.

J.-B. Du and S. Yuan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, JB., Yuan, S., Chen, YE. et al. Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33, 567–574 (2011). https://doi.org/10.1007/s11738-010-0580-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0580-0

Keywords

Navigation