Skip to main content

Advertisement

Log in

Natural antioxidants of plant origin against ozone damage of sensitive crops

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The increasing concentrations of ambient ozone observed during recent decades in many industrial and rural regions of the world present hazard for vegetation and human health. The problem of protection of sensitive vegetation from ozone damage could be ameliorated by replacement of sensitive biotypes with more tolerant ones as well as by application of chemical protectants. However, application of synthetic protectants will pollute the environment and agricultural production and may also have dose-dependent toxicity to vegetation. Therefore, it is urgent to develop alternative, environmentally antiozonants, for example, compounds based on natural plant antioxidants. In this article the literature has been reviewed in search of works relating to the potential of natural plant antioxidants that might serve to protect sensitive vegetation from ozone damage. The following groups of antioxidants have been discussed: (i) ascorbic acid and its derivatives, (ii) phytohormones, (iii) flavonoids, and (iv) polyamines. The physiological aspects of their protective effect on ozone-sensitive crops have been considered. Possible phytotoxicity resulting from their application in the field has been discussed. The issues needing further studies have been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adedipe NO, Ormrod DP (1972) Hormonal regulation of ozone phytotoxicity in Raphanus sativus. Zeitschrift fur Pflanzenphysiologie 68:254–258

    CAS  Google Scholar 

  • Afzal IS, Maqsood A, Basra N, Farooq AM (2005) Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestavum L.). Caderno de Pesquisa Ser Bio Santa Cruz do Sul 17(1):95–109

    Google Scholar 

  • Archambault D, Slaski DJ, Li JJ (2000) Ozone protection in plants. The potential use of chemical protectants to measure oxidant damage in Alberta crops. Report prepared for the Air Research Users Group. Alberta Environment, Edmonton, Alberta

  • Ayub N, Bano A, Ramzan S, Usman M (2000) Effect of VAM on drought tolerance and growth of plant in comparison with the effect of growth regulators. Pakistan J Biol Sci 3(6):957–959. doi:10.3923/pjbs.2000.957.959

    Article  Google Scholar 

  • Bais HP, Walker TS, Kennan AJ, Stermitz FR, Vivanco JM (2003) Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J Agric Food Chem 51:897–901. doi:10.1021/jf020978a

    Article  CAS  PubMed  Google Scholar 

  • Benton J, Fuhrer J, Gimeno BS, Skarby L, Palmer-Brown D, Ball G, Roadknight C, Mills G (2000) An international cooperation programme indicates the wide spread occurrence of ozone injury on crops. Agric Ecosyst Environ 78:19–30. doi:10.1016/S0167-8809(99)00107-3

    Article  CAS  Google Scholar 

  • Blum O, Didyk N (2006) Ambient ozone phytodetection with sensitive clover (Trifolium subterraneum L. cv. Geraldton) in Ukraine. In: Arapis G et al (eds) Ecological risk assessment and multiple stressors. Ecotoxicology. Springer, Netherlands, pp 279–289

  • Blum O, Didyk N (2007) Study of ambient ozone phytotoxicity in Ukraine and ozone protective effect of some antioxidants. J Hazard Mater 149(3):598–602. doi:10.1016/j.jhazmat.2007.06.112

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28(6):1585–1595. doi:10.1016/S0031-9422(00)97805-1

    Google Scholar 

  • Burkey KO, Eason G (2002) Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. Physiol Plant 114(3):387–394. doi:10.1034/j.1399-3054.2002.1140308.x

    Article  CAS  PubMed  Google Scholar 

  • Burkey KO, Neufeld HS, Souza L, Chappelka AH, Davison AW (2006) Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environ Pollut 143(3):427–434. doi:10.1016/j.envpol.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie D (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689. doi:10.1104/pp.105.062000

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone pathogens, and the onset of senescence. Plant Cell Environ 27:959–970. doi:10.1111/j.1365-3040.2004.01203.x

    Article  CAS  Google Scholar 

  • Cross CE, Valacchi G, Schock B, Wilson M, Weber S, Eiserich J, van der Vliet A (2002) a focus on micronutrient antioxidant–oxidant interactions. Environmental oxidant pollutant effects on biologic systems. Am J Respir Crit Care Med 166:44–50. doi:10.1164/rccm.2206015

    Article  Google Scholar 

  • Dong Y (1997) Effects of ABA and 6-BA on CO2 assimilation in wheat seedling under water stress. Acta Agron Sin 23:501–504

    Google Scholar 

  • Eckey-Kaltenbach H, Heller E, Sandermann H (1994) Biochemical plant responses to ozone (iv. cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104(1):67–74. doi:10.1104/pp.104.1.67

    CAS  PubMed  Google Scholar 

  • Elsik CG, Flagler RB (1994) Effects of EDU and Ozoban on the response of shortleaf pine to ozone. Bull Ecol Soc America; Annual Ecological Society of America (ESA) meeting: science and public policy, Knoxville. TN United States 75(2):7–11

    Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28(15):997–1011. doi:10.1111/j.1365-3040.2005.01349.x

    Article  CAS  Google Scholar 

  • Fletcher R, Adedipe N, Ormrod D (1972) Abscisic acid protects beans leaves from ozone-induced phytotoxicity. Can J Bot 50:2389–2391. doi:10.1139/b72-305

    Article  CAS  Google Scholar 

  • Freebairn HT (1957) Reversal of inhibitory effects of ozone on oxygen uptake by mitochondria. Science 126:303

    Article  CAS  PubMed  Google Scholar 

  • Grace S, Logan B (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B 355:499–1510

    Article  Google Scholar 

  • Haggag WM, El-Khair HA (2007) Application of some natural compounds for management of potato late and early blights. J Food Agric Environ 5(2):157–163

    CAS  Google Scholar 

  • Hamada AM (2000) Amelioration of drought stress by ascorbic acid, thiamin and aspirin in wheat plants. Indian J Plant Physiol 5:358–364

    CAS  Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423

    CAS  Google Scholar 

  • Heath R (1988) Biochemical mechanisms of pollutant stress. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier, London, pp 259–286

    Google Scholar 

  • Heath RL (2007) Alterations of the biochemical pathways of plants by the air pollutant ozone: which are the true gauges of injury? ScientificWorldJournal 21(7, Suppl 1):110–118

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155(3):453–463. doi:10.1016/j.envpol.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  • Hiller W, Rosemann D, Pflanz K, Sandman H (1990) Ozone-induction of secondary metabolism in Scots pine and Norway spruce. Bull Liaison 15:104

    Google Scholar 

  • Holland M, Kinghorn S, Emberson L, Cinderby S, Ashmore M, Mills G, Harmens H (2006) Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. Part of the UNECE International Cooperative Programme on vegetation. Contract report EPG 1/3/205. CEH project no: C02309NEW

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone. Plant Cell Environ 17(7):783–794. doi:10.1111/j.1365-3040.1994.tb00173.x

    Article  CAS  Google Scholar 

  • Karenlampi L, Metsarinne S, Paakkonen E (1998) Stomatal conductance of birch leaves—plenty of variation in the variable which determines the ozone dose. Chemosphere 36:675–678. doi:10.1016/S0045-6535(97)10106-0

    Article  CAS  Google Scholar 

  • Keen N, Taylor O (1975) Ozone injury in soybeans. Isoflavonoid accumulation is related to necrosis. Plant Physiol 55:731–733. doi:10.1104/pp.55.4.731

    Article  CAS  PubMed  Google Scholar 

  • Koch J, Scherzer A, Eshita S, Davis K (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense gene activation. Plant Physiol 118:1243–1252. doi:10.1104/pp.118.4.1243

    Article  CAS  Google Scholar 

  • Krasil’nikov NA (1958) Soil microorganisms and higher plants. Academy of Sciences of the USSR, Moscow

  • Krupa S (2003) Atmosphere and agriculture in the new millennium. Environ Pollut 126:293–300. doi:10.1016/S0269-7491(03)00242-2

    Article  CAS  PubMed  Google Scholar 

  • Kubi J (2005) The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol Plant 27(3):289–295. doi:10.1007/s11738-005-0005-7

    Article  Google Scholar 

  • Kuehler E, Flagler R (1999) The effects of sodium erythorbate and ethylenediurea on photosynthetic function of ozone exposed loblolly pine seedlings. Environ Pollut 105(1):25–35. doi:10.1016/S0269-7491(98)00211-5

    Article  CAS  Google Scholar 

  • Kurchii BA (2000) Possible free radical mechanisms of action of auxin and kinetin. In: 12th Congress of the Federation of European Societies of plant physiology, 21–25 August 2000, Budapest. Plant Physiol Biochem 38(Supplement), Abstract S08-39, p. 91

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. Part I: differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889. doi:10.1104/pp.95.3.882

    Article  CAS  PubMed  Google Scholar 

  • Ludwikow A, Gallois P, Sadowski J (2004) Ozone-induced oxidative stress in Arabidopsis: transcription profiling by microarray approach. Cell Mol Biol Lett 9(4B):829–842

    CAS  PubMed  Google Scholar 

  • Mahalingam R, Shah N, Scrymgeour A, Fedoroff N (2005) Temporal evolution of the Arabidopsis oxidative stress response. Plant Mol Biol 57:709–730. doi:10.1007/s11103-005-2860-4

    Article  CAS  PubMed  Google Scholar 

  • Manning WJ (1992) Assessing the effects of ozone on plants: use and misuse of ethylendiurea (EDU). In: Proceedings of the 85th air and waste management association meeting. Kansas City, Missouri, pp 95–100

  • Manning WJ, Vardaro PM (1973) Suppression of oxidant injury on beans by systemic fungicides. Phytopathology 63:1415–1416. doi:10.1094/Phyto-63-1415

    Article  CAS  Google Scholar 

  • Manning WJ, Flagler RB, Frenkel MA (2003) Assessing plant response to ambient ozone: growth of ozone-sensitive loblolly pine seedlings treated with ethylenediurea or sodium erythorbate. Environ Pollut 126(1):73–81. doi:10.1016/S0269-7491(03)00141-6

    Article  CAS  PubMed  Google Scholar 

  • Menser HA (1963) Response of plants to air pollutants. Part III: a relation between ascorbic acid levels and ozone susceptibility of light-preconditioned tobacco plants. Plant Physiol 38:564–567. doi:10.1104/pp.38.5.605

    Article  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L et al (2007) A synthesis of AOT40-based response functions and critical levels of ozone for 11 agricultural and horticultural crops. Atmos Environ 41:2630–2643. doi:10.1016/j.atmosenv.2006.11.016

    Article  CAS  Google Scholar 

  • Moldau H, Padu E, Bichele I (1997) Quantification of ozone decay and requirement for ascorbate in Phaseolus vulgaris L. mesophyll cell walls. Phyton 37:175–180

    CAS  Google Scholar 

  • Ormrod DP, Beckerson DW (1986) Polyamines as anti-ozonants for tomato. Hortic Sci 21(4):1070–1071

    CAS  Google Scholar 

  • Palavan-Unsal N (1995) Stress and polyamine metabolism. Bulg J Plant Physiol 21(2–3):3–14

    CAS  Google Scholar 

  • Parvez MM, Tomita-Yokotani K, Fujii Y, Konishi T, Iwashina T (2004) Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem Syst Ecol 32:631–635. doi:10.1016/j.bse.2003.12.002

    Article  CAS  Google Scholar 

  • Pasqualini S, Antoniellia M, Ederlia L, Piccionia C, Loreto F (2002) Ozone uptake and its effect on photosynthetic parameters of two tobacco cultivars with contrasting ozone sensitivity. Plant Physiol Biochem 40(6–8):599–603. doi:10.1016/S0981-9428(02)01426-2

    Article  CAS  Google Scholar 

  • Pasqualini S, Piccioni C, Reale L, Ederli L, Della Torre G, Ferranti F (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122–1134. doi:10.1104/pp.103.026591

    Article  CAS  PubMed  Google Scholar 

  • Pauls KP, Thompson JE (1982) Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage. Plant Cell Physiol 23(5):821–832

    CAS  Google Scholar 

  • Puckette MC, Tang Y, Mahalingam R (2008) Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions. BMC Plant Biol 8:46. doi:10.1186/1471-2229-8-46

    Article  PubMed  Google Scholar 

  • Rajasekaran LR, Blake TJ (1999) New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. J Plant Growth Regul 18:175–181. doi:10.1007/PL00007067

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi:10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  • Robles C, Greff S, Pasqualini V, Garzino S, Bousquet-Melou A, Fernandez C, Korboulewsky N, Bonin G (2003) Phenols and flavonoids in aleppo pine needles as bioindicators of air pollution. J Environ Qual 32:2265–2271

    Article  CAS  PubMed  Google Scholar 

  • Runeckles VC, Resh HM (1975) Effects of cytokinins on responses of bean leaves to chronic ozone treatment. Atmos Environ 9:749–753

    Article  CAS  PubMed  Google Scholar 

  • Saeidi-Sar S, Khavari-Nejad R, Fahimi H, Ghorbanli M, Majd A (2007) Interactive effects of gibberellin A3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in Glycine max seedlings under nickel stress. Russ J Plant Physiol 54(1):74–79

    Article  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factor in wheat plants. Bulg J Plant Physiol 29(Special Issue):314–319

    Google Scholar 

  • Severino JF, Stich K, Soja G (2007) Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environ Pollut 146(3):707–714. doi:10.1016/j.envpol.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Radic Biol Med 23(3):480–488. doi:10.1016/S0891-5849(97)00108-1

    Article  CAS  PubMed  Google Scholar 

  • Siegel SM (1962) Protection of plants against airborne oxidants: cucumber seedlings at extreme ozone levels. Plant Physiol 37:261–266. doi:10.1104/pp.37.3.261

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  PubMed  Google Scholar 

  • Thwaites RH, Ashmore MR, Morton AJ, Pakeman RJ (2006) The effects of tropospheric ozone on the species dynamics of calcareous grassland. Environ Pollut 144(2):500–509. doi:10.1016/j.envpol.2006.01.028

    Article  CAS  PubMed  Google Scholar 

  • Tilh P, Falke HE, Prinsen MK, Willems MI (1997) Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem Toxicol 35(3–4):337–348. doi:10.1016/S0278-6915(97)00121-X

    Google Scholar 

  • Tomlinson H, Rich S (1973) Anti-senescent compounds reduce injury and steroid changes in ozonated leaves and their chloroplasts. Phytopathology 63:903–906. doi:10.1094/Phyto-63-903

    Article  CAS  Google Scholar 

  • Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F (2006) Gene expression profiles of O-3-treated Arabidopsis plants. Plant Cell Environ 29:1686–1702. doi:10.1111/j.1365-3040.2006.01542.x

    Article  CAS  PubMed  Google Scholar 

  • Turcsanyi E, Lyons T, Plochl M, Barnes J (2000) Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.). J Exp Bot 51(346):901–910. doi:10.1093/jexbot/51.346.901

    Article  CAS  PubMed  Google Scholar 

  • Vahala J, Keinanen M, Schutzendubel A, Polle A, Kangasjarvi J (2003) Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid. Plant Physiol 132:196–205. doi:10.1104/pp.102.018630

    Article  CAS  PubMed  Google Scholar 

  • Verbeke P, Siboska GE, Clark BFC, Rattan SIS (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Comm 276:1265–1270. doi:10.1006/bbrc.2000.3616

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Nicholas Hewitt C (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32(5):520–531. doi:10.1111/j.1365-3040.2009.01946.x

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402. doi:10.1016/j.atmosenv.2004.03.067

    Article  CAS  Google Scholar 

  • Wang T, Wang S, Guo S, Sun Y (2006) Effects of exogenous spermidine on Cucumis sativus L. seedlings photosynthesis under root zone hypoxia stress. Chin J Ecol 17(9):1609–1612

    CAS  Google Scholar 

  • Wenzel AA, Schlautmann H, Jones CA, Kuppers K, Mehlhorn H (1995) Aminoethoxyvinylglycine, cobalt and ascorbic acid all reduce ozone toxicity in mung beans by inhibition of ethylene biosynthesis. Physiol Plant 93(2):286–290. doi:10.1111/j.1399-3054.1995.tb02230.x

    Article  CAS  Google Scholar 

  • Whitaker BD, Lee EH, Rowland RA (1990) EDU and ozone protection: Foliar glycerolipids and steryl lipids in snapbean exposed to O3. Physiol Plant 80(2):286–293. doi:10.1111/j.1399-3054.1990.tb04409.x

    Article  CAS  Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849. doi:10.1016/j.freeradbiomed.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116(1):37–47. doi:10.1016/S0269-7491(01)00174-9

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Nouchi I, Toyama S (1994) Studies on the role of active oxygen in ozone injury to plant cells. II. Effect of antioxidants on rice protoplasts exposed to ozone. Plant Sci 95(2):207–212. doi:10.1016/0168-9452(94)90094-9

    Article  CAS  Google Scholar 

  • Yoshida M, Tamaoki T, Shikano N, Nakajima D, Ogawa M, Ioki M, Aono A., Kubo H, Kamada Y, Inoue Y et al (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47(2):304–308. doi:10.1093/pcp/pci246

    Google Scholar 

  • Zhang X, Ervin EH (2004) Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1737–1745

    Article  CAS  Google Scholar 

  • Zheng Y, Lyons T, Ollerenshaw JH, Barnes JD (2000) Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiol Biochem 38(5):403–411. doi:10.1016/S0981-9428(00)00755-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science & Technology Center in Ukraine (project N 3894) and by “M.M. Gryshko” National Botanical Garden of the National Academy of Sciences of Ukraine. The authors extend their thanks to Prof. Reginald Noble (Bowling Green University, USA) for helpful editorial suggestions prior to finalizing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya P. Didyk.

Additional information

Communicated by A. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didyk, N.P., Blum, O.B. Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant 33, 25–34 (2011). https://doi.org/10.1007/s11738-010-0527-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0527-5

Keywords

Navigation