Skip to main content
Log in

Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Salvia miltiorrhiza

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate (MVA), which is the first committed step in MVA pathway for isoprenoid biosynthesis in plants. In this study, a full-length cDNA encoding HMGR was isolated from Salvia miltiorrhiza by rapid amplification of cDNA ends (RACE) for the first time, which was designated as SmHMGR (GenBank Accession No.EU680958). The full-length cDNA of SmHMGR was 2,115 bp containing a 1,695 bp open reading frame (ORF) encoding a polypeptide of 565 amino acids. Bioinformatic analyzes revealed that the deduced SmHMGR had extensive homology with other plant HMGRs contained two transmembrane domains and a catalytic domain. Molecular modeling showed that SmHMGR is a new HMGR with a spatial structure similar to other plant HMGRs. Phylogenetic tree analysis indicated that SmHMGR belongs to the plant HMGR super-family and has the closest relationship with HMGR from Picrorhiza kurrooa. Expression pattern analysis implied that SmHMGR expressed highest in root, followed by stem and leaf. The expression of SmHMGR could be up-regulated by salicylic acid (SA) and methyl jasmonate (MeJA), suggesting that SmHMGR was elicitor-responsive. This work will be helpful to understand more about the role of HMGR involved in the tanshinones biosynthesis at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  PubMed  CAS  Google Scholar 

  • Aule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Markus LB (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871. doi:10.1073/pnas.1031755100

    Article  Google Scholar 

  • Chang WL, Chen CF (1991) Cytotoxic activities of tanshinone against human carrinoma cell line. Am J Chin Med 19:207. doi:10.1142/S0192415X91000284

    Article  PubMed  Google Scholar 

  • Chapell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthesis pathway in plants. Annu Rev Plant Physio Plant Mol 46:521–547. doi:10.1146/annurev.pp.46.060195.002513

    Article  Google Scholar 

  • Chen AJ, Li CH, Gao WH, Hua ZD, Chen XG (2005) Application of non-aqueous micellar electrokinetic chromatography to the analysis of active components in Radix Salvia miltiorrhiza and its medicinal preparations. J Pharm Biomed Anal 37:811–814. doi:10.1016/j.jpba.2004.11.040

    Article  PubMed  CAS  Google Scholar 

  • Ge XC, Wu JY (2005a) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168:487–491. doi:10.1016/j.plantsci.2004.09.012

    Article  CAS  Google Scholar 

  • Ge XC, Wu JY (2005b) Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by β-aminobutyric acid. Appl Microbiol Biotechnol 68:183–188. doi:10.1007/s00253-004-1873-2

    Article  PubMed  CAS  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. CABIOS 11:681–684

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505

    Article  PubMed  CAS  Google Scholar 

  • Ha SH, Kim JB, Hwang YS, Lee SW (2003) Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum). Biochim Biophys Acta 1625:253–260

    PubMed  CAS  Google Scholar 

  • Hu P, Luo GA, Zhao ZZ, Jiang ZH (2005) Quality assessment of Radix Salvia Miltiorrhiza. Chem Pharm Bull (Tokyo) 53:481–484. doi:10.1248/cpb.53.481

    Article  CAS  Google Scholar 

  • Huang BB, Yi B, Duan YB, Sun LN, Yu XJ, Guo J, Chen WS (2007) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep doi:10.1007/s11033-007-9130-2

  • Istvan ES, Deisenhofer J (2000) The structure of the catalytic portion of human HMG-CoA reductase. Biochim Biophys Acta 1529:9–18

    PubMed  CAS  Google Scholar 

  • Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J (2000) Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J 19:819–830. doi:10.1093/emboj/19.5.819

    Article  PubMed  CAS  Google Scholar 

  • Ji YL, He JT, Zhou QH, Chen J, Li Q, Zhu J, Liu HY (2008) The inhibiting effect and its molecular mechanism of tanshinone on human lung cancer cell line in vitro. Chin J Lung Cancer 11:202–205

    CAS  Google Scholar 

  • Jiang JH, Kai GY, Cao XY, Chen FM, He DN, Liu Q (2006) Molecular cloning of a HMG-CoA reductase gene from Eucommia ulmoides oliver. Biosci Rep 26:171–181. doi:10.1007/s10540-006-9010-3

    Article  PubMed  CAS  Google Scholar 

  • Kai GY, Miao ZQ, Zhang L, Zhao DL, Liao ZH, Sun XF, Zhao LX, Tang KX (2006) Molecular cloning and expression analyzes of a new gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Taxus x media. Biol Plant 50:359–366. doi:10.1007/s10535-006-0050-0

    Article  CAS  Google Scholar 

  • Kato-Emori S, Higashi K, Hosoya K, Kobayashi T, Ezura H (2001) Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon (Cucumis melo L. reticulatus). Mol Genet Genomics 265:135–142. doi:10.1007/s004380000401

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 12:1244–1245. doi:10.1093/bioinformatics/17.12.1244

    Article  Google Scholar 

  • Learned RM, Fink GR (1989) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc Natl Acad Sci USA 86:2779–2783. doi:10.1073/pnas.86.8.2779

    Article  PubMed  CAS  Google Scholar 

  • Li L, Hu GL, Frank SCL, Wang XR (2001) Content and distribution characteristics of anti-oxidant components from Salvia miliorrhiza Bge. Acta Agric Univ Jiangxiensis 23:487–491 (in Chinese)

    CAS  Google Scholar 

  • Liang Y, Yang YM, Yuan SL (2000) Studies on pharmic mechanism and clinic application of tanshinone. Tradit Herb Drugs 31:304–306

    CAS  Google Scholar 

  • Liao ZH, Tan QM, Chai YR, Zuo KJ, Chen M, Gong YH, Wang P, Pi Y, Tan F, Sun XF, Tang KX (2004) Cloning and characterisation of the gene encoding HMG-CoA reductase from Taxus x media and its functional identification in yeast. Funct Plant Biol 31:73–81. doi:10.1071/FP03153

    Article  CAS  Google Scholar 

  • Lin TJ (1991) Antioxidation mechanism of schizandrin and tanshinonatic acid A and their effects on the protection of cardiotoxic action of adriamycin. Sheng Li Ke Xue Jin Zhan 22:342–345

    PubMed  CAS  Google Scholar 

  • Maldenado-Mendoza IE, Burnett RJ, Nessler CL (1992) Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus. Plant Physiol 100:1613–1614. doi:10.1104/pp.100.3.1613

    Article  Google Scholar 

  • Ruiz-Albert J, Cerda-Olmedo E, Corrochano LM (2002) Genes for mevalonate biosynthesis in Phycomyces. Mol Genet Genomics 266:768–777. doi:10.1007/s004380100565

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520

    Article  PubMed  CAS  Google Scholar 

  • Shen GA, Pang YZ, Wu WS, Liao ZH, Zhao LX, Sun XF, Tang KX (2006) Cloning and characterization of a root specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme a reductase from Ginkgo biloba. Mol Biol Rep 33:117–127. doi:10.1007/s11033-006-0014-7

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Cui GH, Huang LQ, Qiu DY (2007a) Effects of methyl jasmonat on accumulation and release of tanshinones in suspension cultures of Salvia miltiorrhiza hairy root. Zhongguo Zhong Yao Za Zhi 32:300–302

    PubMed  CAS  Google Scholar 

  • Wang YC, Guo BH, Zhang F, Yao HY, Miao ZQ, Tang KX (2007b) Molecular cloning and functional analysis of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Hazel (Corylus avellana L. Gasaway). J Biochem Mol Biol 40:861–869

    PubMed  CAS  Google Scholar 

  • Wu JY, Shi M (2007) Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Appl Microbiol Biotechnol 78:441–448. doi:10.1007/s00253-007-1332-y

    Article  Google Scholar 

  • Zhan CY, Tao XL, Tian C, Xiong W, Zheng Z (2004) Relationship between intercellular adhesion molecule-1 and hypertensive left ventricular hypertrophy and the effect of tanshinone IIA on expression of intercellular adhesion molecule-1. Chin J Integr Tradit West Med Intensive Crit Care 11:208–211

    Google Scholar 

  • Zhou GT, Zhao GF, Fan YC (2006) Effect of tanshinone IIA on expression of MCP-1 and IL-1 in injured smooth muscle cell induced by TNF-1. Tianjin J Tradit Chin Med 23:189–191

    CAS  Google Scholar 

  • Zhou W, Shen YF, Chen JF, Dai LM, Kai GY, Zhou GY (2007) Research and development of biotechnology of Salvia miltiorrhiza Bunge. J Biol 24:48–51 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Education Committee Foundation (09ZZ138, 06DZ015), Zhejiang Provincial Natural Science Foundation (Y2080621), Shanghai Science and Technology Committee Project (06QA14038, 08391911800, 065458022, 073158202, 075405117, 05ZR14093), Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50401) and Project from Shanghai Normal University (SK200830, CH030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Kai.

Additional information

Communicated by L. A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, P., Zhou, W., Zhang, L. et al. Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Salvia miltiorrhiza . Acta Physiol Plant 31, 565–572 (2009). https://doi.org/10.1007/s11738-008-0266-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0266-z

Keywords

Navigation