Skip to main content
Log in

Investigating the effects of moxibustion on serum metabolism in healthy human body based on the 1H NMR metabolomics technology

基于1H NMR 代谢组学技术探讨艾灸对正常人体血清代谢的影响

  • Special Topic for 973 Program
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of moxibustion on the serum metabolism in healthy human body based on the 1H nuclear magnetic resonance (1H NMR) metabolomics technology, and to find the differences in metabolites, as well as to elucidate the effects of moxibustion on healthy human body from the viewpoint of global metabolism.

Methods

Sixty subjects of healthy young men from the enrolled students were randomly divided into a moxibustion group and a control group using random number table, with 30 cases in each group. Subjects in the moxibustion group accepted mild moxibustion on the right Zusanli (ST 36), once a day, 15 min for each time, and continuous treatment for 10 d; those in the control group did not receive any intervention. There were 28 cases in the moxibustion group and 23 cases in the control group after interventions. On the 1st day, 5th day and 10th day of the intervention, serum samples were collected from subjects of the two groups, and metabolic spectra were obtained by the 1H NMR technology.

Results

Before and after the intervention, serum 1H NMR of the moxibustion group was significantly different, while the difference was insignificant in the control group. Metabolite changes in the moxibustion group were mainly in low density lipoprotein (LDL)/very low density lipoprotein (VLDL), valine, isoleucine, leucine, lactic acid, glutamine, citric acid, polyunsaturated fatty acids, creatine, glycine, glycerol, glucose, tyrosine, histidine, formic acid, alanine, lysine, acetic acid, and glutamic acid.

Conclusion

Moxibustion can cause changes of serum metabolic patterns in healthy human by influencing the concentrations of branched-chain amino acids, polyunsaturated fatty acids, and other metabolites to strengthen body's metabolisms of amino acids and fatty acid.

摘要

目的

基于核磁共振氢谱代谢组学技术(1H nuclear magnetic resonance, 1H NMR)探讨艾灸对正常人体血清代谢的影响, 并寻找差异性代谢物, 从整体代谢的角度阐述艾灸对健康人体的影响。

方法

将60 例在校健康青年男性采用随机数字表随机分成艾灸组和对照组, 每组30 例。艾灸组予温和灸右侧足三里, 每天1 次, 每次15 min, 连续治疗10 d; 对照组不予任何干预。干预结束后艾灸组剩余28 例, 对照组剩余23 例。在干预第1 d、第5 d 和第10 d, 采集两组受试者的血清样品, 运用1H NMR 技术获取代谢图谱。

结果

艾灸组干预前后血清1H NMR 有明显差异, 对照组干预前后1H NMR 无明显差异。艾灸组代谢物的变化主要是低密度脂蛋白(low densitylipoprotein, LDL)/极低密度脂蛋白(very low density lipoprotein, VLDL)、缬氨酸、异亮氨酸、亮氨酸、乳酸、谷氨酰胺、柠檬酸、多不饱和脂肪酸、肌酸、甘氨酸、甘油、葡萄糖、酪氨酸、组氨酸、甲酸、丙氨酸、赖氨酸、乙酸、谷氨酸。

结论

艾灸能够引起正常人体血清代谢模式变化, 通过影响支链氨基酸、多不饱和脂肪酸等代谢物浓度加强机体的氨基酸、脂肪酸代谢。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Veselkov K, Mikros E, Mougios V, Theodoridis GA. 1H NMR study on the short-and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J Proteome Res, 2013, 12(1): 470–480.

    Article  CAS  PubMed  Google Scholar 

  2. Syggelou A, Iacovidou N, Atzori L, Xanthos T, Fanos V. Metabolomics in the developing human being. Pediatr Clin North Am, 2012, 59(5): 1039–1058.

    Article  PubMed  Google Scholar 

  3. Barton RH. A decade of advances in metabolomics. Expert Opin Drug Metab Toxicol, 2011, 7(2): 129–136.

    Article  PubMed  Google Scholar 

  4. Lu ZZ, Yin XJ, Teng WJ, Chen YH, Sun J, Zhao JM, Wang AQ, Bao CH, Shi Y. Comparative effect of electroacupuncture and moxibustion on the expression of substance P and vasoactive intestinal peptide in patients with irritable bowel syndrome. J Tradit Chin Med, 2015, 35(4): 402–410.

    Article  Google Scholar 

  5. Zhao JM, Wu LY, Liu HR, Hu HY, Wang JY, Huang RJ, Shi Y, Tao SP, Gao Q, Zhou CL, Qi L, Ma XP, Wu HG. Factorial study of moxibustion in treatment of diarrheapredominant irritable bowel syndrome. World J Gastroenterol, 2014, 20(37): 13563–13572.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang K, Cai SC, Zhu CF, Fei AH, Qin XF, Xia JG. Clinical study on primary osteoporosis treated with spreading moxibustion for warming yang and activating blood circulation. Zhongguo Zhen Jiu, 2014, 34(6): 555–558.

    PubMed  Google Scholar 

  7. Kim TH, Kim KH, Kang JW, Lee M, Kang KW, Kim JE, Kim JH, Lee S, Shin MS, Jung SY, Kim AR, Park HJ, Jung HJ, Song HS, Kim HJ, Choi JB, Hong KE, Choi SM. Moxibustion treatment for knee osteoarthritis: a multi-centre, non-blinded, randomised controlled trial on the effectiveness and safety of the moxibustion treatment versus usual care in knee osteoarthritis patients. PLoS One, 2014, 9(7): e101973.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen R, Chen M, Xiong J, Chi Z, Zhang B, Tian N, Xu Z, Zhang T, Li W, Zhang W, Rong X, Wang Z, Sun G, Ge B, Yu G, Song N. Curative effect of heat-sensitive moxibustion on chronic persistent asthma: a multicenter randomized controlled trial. J Tradit Chin Med, 2013, 33(5): 584–591.

    Article  PubMed  Google Scholar 

  9. Wang JH, Du XZ, Fang XL, Yan XK, Qin XG, Zhao BY. Discussion on application of metabolomics technology in acupuncture-moxibustion research. Gansu Zhongyi Xueyuan Xuebao, 2012, 29(1): 18–20.

    Google Scholar 

  10. Wang X, Sun H, Zhang A, Sun W, Wang P, Wang Z. Potential role of metabolomics approaches in the area of traditional Chinese medicine: as pillars of the bridge between Chinese and Western medicine. J Pharm Biomed Anal, 2011, 55(5): 859–868.

    Article  CAS  PubMed  Google Scholar 

  11. Higashi T, Hayashi H, Kaida T, Arima K, Takeyama H, Taki K, Izumi D, Tokunaga R, Kosumi K, Nakagawa S, Okabe H, Imai K, Nitta H, Hashimoto D, Chikamoto A, Beppu T, Baba H. Prognostic impact of visceral fat amount and branched-chain amino acids (BCAA) in hepatocellular carcinoma. Ann Surg Oncol, 2015, 22(Suppl 3): 1041–1047.

    Article  PubMed  Google Scholar 

  12. Xu J, Cheng KK, Yang Z, Wang C, Shen G, Wang Y, Liu Q, Dong J. 1H NMR metabolic profiling of biofluids from rats with gastric mucosal lesion and electroacupuncture treatment. Evid Based Complement Alternat Med, 2015: 801691.

    Google Scholar 

  13. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem, 2010, 285(15): 11348–11356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, Spector TD. Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis, 2010, 69(6): 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  15. Kim DH, Kim SH, Jeong WS, Lee HY. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances. J Exerc Nutrition Biochem, 2013, 17(4): 169–180.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ijichi C, Matsumura T, Tsuji T, Eto Y. Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system. Biochem Biophys Res Commun, 2003, 303(1): 59–64.

    Article  CAS  PubMed  Google Scholar 

  17. Nishitani S, Takehana K, Fujitani S, Sonaka I. Branchedchain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol, 2005, 288(6): G1292–G1300.

    Article  CAS  PubMed  Google Scholar 

  18. Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB J, 2004, 18(15): 1894–1896.

    CAS  PubMed  Google Scholar 

  19. Higuchi N, Kato M, Miyazaki M, Tanaka M, Kohjima M, Ito T, Nakamuta M, Enjoji M, Kotoh K, Takayanagi R. Potential role of branched-chain amino acids in glucose metabolism through the accelerated induction of the glucose-sensing apparatus in the liver. J Cell Biochem, 2011, 112(1): 30–38.

    Article  CAS  PubMed  Google Scholar 

  20. Sharma D, Nkembi AS, Aubry E, Houeijeh A, Butruille L, Houfflin-Debarge V, Besson R, Deruelle P, Storme L. Maternal PUFA omega-3 supplementation prevents neonatal lung injuries induced by hyperoxia in newborn rats. Int J Mol Sci, 2015, 16(9): 22081–22093.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marventano S, Kolacz P, Castellano S, Galvano F, Buscemi S, Mistretta A, Grosso G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter. Int J Food Sci Nutr, 2015, 66(6): 611–622.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-hai Lin  (林东海) or Xiao-rong Chang  (常小荣).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, C., Zhong, H., Hu, Xm. et al. Investigating the effects of moxibustion on serum metabolism in healthy human body based on the 1H NMR metabolomics technology. J. Acupunct. Tuina. Sci. 14, 93–100 (2016). https://doi.org/10.1007/s11726-016-0907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-016-0907-5

Keywords

关键词

中图分类号

Navigation