Skip to main content

Advertisement

Log in

An integrated modelling approach for R5–X4 mutation and HAART therapy assessment

Swarm Intelligence Aims and scope Submit manuscript

Abstract

We have modelled the within-patient evolutionary process during HIV infection using different methodologies. New viral strains arise during the course of HIV infection. These multiple strains of the virus are able to use different coreceptors, in particular the CCR5 and the CXCR4 (R5 and X4 phenotypes, respectively) influence the progression of the disease to the AIDS phase. We present a model of HIV early infection and CTLs response which describes the dynamics of R5 quasispecies, specifying the R5 to X4 switch and the effects of the immune response. We illustrate the dynamics of HIV multiple strains in the presence of multidrug HAART therapy. The HAART combined with X4 strain blocker drugs might help to reduce infectivity and lead to slower progression of the disease. On the methodology side, our model represents a paradigm of integrating formal methods and mathematical models as a general framework to study HIV multiple strains during disease progression, and it will inch towards providing help in selecting among vaccines and drug therapies. The results presented here are one of the rare cases of methodological cross comparison (stochastic and deterministic) and a novel implementation of model checking in therapy validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Agrawal, S., Archer, C., & Schaffer, D. V. (2009). Computational models of the notch network elucidate mechanisms of context-dependent signalling. PLoS Computational Biology, 5(5), e1000390.

    Article  Google Scholar 

  • Althaus, C. L., & De Boer, R. J. (2008). Dynamics of immune escape during HIV/SIV infection. PLOS Computational Biology, 4(7), e1000103.

    Article  Google Scholar 

  • Asquith, B., Edwards, C. T. T., Lipsitch, M., & McLean, A. R. (2006). Inefficient cytotoxic T lymphocyte mediated killing of HIV-1 infected cells in vivo. PLOS Biology, 4(4), e90.

    Article  Google Scholar 

  • Aziz, A., Sanwal, K., Singhal, V., & Brayton, R. (2000). Model checking continuous time Markov chains. ACM Transactions on Computational Logic, 1(1), 162–170.

    Article  MathSciNet  Google Scholar 

  • Baier, C., Haverkort, B., Hermanns, H., & Katoen, J. P. (2003). Model-checking algorithms for continuous-time Markov chains. IEEE Transaction on Software Engineering, 29(6), 524–541.

    Article  Google Scholar 

  • Borrow, P., Lewicki, H., Wei, X., Horwitz, M. S., Peffer, N., Meyers, H., Nelson, J. A., Gairin, J. E., Hahn, B. H., Oldstone, M. B. A., & Shaw, G. M. (1997). Antiviral pressure exerted by HIV-1 specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Medicine, 3, 205–211.

    Article  Google Scholar 

  • Cannon, M. J., Openshaw, P. J., & Askonas, B. A. (1988). Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. The Journal of Experimental Medicine, 168, 1163–1168.

    Article  Google Scholar 

  • Carrington, M., & OBrien, S. J. (2003). The influence of HLA genotype on AIDS. Annual Review of Medicine, 54, 535–551.

    Article  Google Scholar 

  • Casazza, J., Betts, M., Picker, L., & Koup, R. (2001). Decay kinetics of human immunodeficiency virus-specific CD8+ T cells in peripheral blood after initiation of highly active antiretroviral therapy. Journal of Virology, 75, 6508–6516.

    Article  Google Scholar 

  • Celada, F., & Seiden, P. E. (1996). Affinity maturation and hypermutation in a simulation of the humoral immune response. Journal of Immunology, 26, 1350–1358.

    Google Scholar 

  • Chao, L., Davenport, M. P., Forrest, S., & Perelson, A. S. (2004). A stochastic model of cytotoxic T cell responses. Theoretical Biology, 228, 227–240.

    Article  MathSciNet  Google Scholar 

  • Ciocchetta, F., & Hillston, J. (2009). Bio-PEPA: a framework for the modelling and analysis of biochemical networks. Theoretical Computer Science, 410(33), 3065–3084.

    Article  MATH  MathSciNet  Google Scholar 

  • Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cambridge: MIT Press.

    Google Scholar 

  • De Boer, R. J., & Perelson, A. S. (1995). Towards a general function describing T-cell proliferation. Journal of Theoretical Biology, 175, 657–576.

    Google Scholar 

  • Dybul, M., Fauci, A. S., Bartlett, J. G., Kaplan, J. E., & Pau, A. K. (2002). Panel on clinical practices for treatment of HIV (September 2002): guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Annals of Internal Medicine, 137(2), 381–433.

    Google Scholar 

  • Finzi, D., Blankson, J., Siliciano, J. D., Margolick, J. B., Chadwick, K., et al. (1999). Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine, 5, 512–517.

    Article  Google Scholar 

  • Fisher, J., Piterman, N., Hajnal, A., & Henzinger, T. A. (2007). Predictive modeling of signalling crosstalk during C. elegans vulval development. PLoS Computational Biology, 3(5), e92.

    Article  Google Scholar 

  • Fromentin, J., Comet, J. P., Le Gall, P., & Roux, O. (2007). Analysing gene regulatory networks by both constraint programming and model-checking. In The 29th annual international conference of the IEEE EMBS (pp. 4595–4598). Washington: IEEE Press.

    Google Scholar 

  • Fryer, H. R., Scherer, A., Oxenius, A., Phillips, R., & McLean, A. R. (2009). No evidence for competition between cytotoxic T-lymphocyte responses in HIV-1 infection. Proceeding of Royal Society of Biosciences, 276(1677), 4389–4397.

    Article  Google Scholar 

  • Ganusov, V. V., & De Boer, R. J. (2005). Estimating costs and benefits of CTL escape mutations in SIV/HIV infection. PLoS Computational Biology, 2(3), e24.

    Article  Google Scholar 

  • Gray, L., Sterjovski, J., Churchill, M., Ellery, P., Nasr, N., Lewin, S. R., Crowe, S. M., Wesselingh, S. L., Cunningham, A. L., & Gorry, P. R. (2005). Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology, 337, 384–398.

    Article  Google Scholar 

  • Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., & Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual Review of Immunology, 20, 621–667.

    Article  Google Scholar 

  • Haase, A. T. (1999). Population biology of HIV-1 infection: viral and CD4+ T cell demography and dynamics in lymphatic tissues. Annual Review of Immunology, 17, 625–656.

    Article  Google Scholar 

  • Herbeuval, J. P., Hardy, A. W., Boasso, A., Anderson, S. A., Dolan, M. J., Dy, M., & Shearer, G. M. (2005). Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 13974–13979.

    Article  Google Scholar 

  • Ho, D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126.

    Article  Google Scholar 

  • Jin, X., Bauer, D. E., Tuttleton, S. E., Lewin, S., Gettie, A., Blanchard, J., Irwin, C. E., Safrit, J. T., Mittler, J., Weinberger, L., Kostrikis, L. G., Zhang, L., Perelson, A. S., & Ho, D. D. (1999). Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virusinfected macaques. The Journal of Experimental Medicine, 189, 991–998.

    Article  Google Scholar 

  • Kalams, S. A., Goulder, P. J., Shea, A. K., Jones, N. G., Trocha, A. K., Ogg, G. S., & Walker, B. D. (1999). Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. Journal of Virology, 73, 6721–6728.

    Google Scholar 

  • Kaslow, R., Carrington, M., Apple, R., Park, L., Munoz, A., Saah, A. J., Goedert, J. J., Winkler, C., O’Brien, S. J., Rinaldo, C., Detels, R., Blattner, W., Phair, J., Erlich, H., & Mann, D. L. (1996). Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Medicine, 2, 405–411.

    Article  Google Scholar 

  • Kwiatkowska, M., Norman, G., & Parker, D. (2009). Algorithmic bioprocesses: quantitative verification techniques for biological processes. In A. Condon, D. Harel, J. Kok, A. Salomaa, & E. Winfree (Eds.), Natural computing series (pp. 391–409). Berlin: Springer.

    Google Scholar 

  • Kwiatkowska, The PRISM model checker. Internet Engineering Task Force. http://www.prismmodelchecker.org.

  • Layne, S. P., Spouge, J. L., & Dembo, M. (1998). Quantifying the infectivity of human immunodeficiency virus. Proceedings of the National Academy of Sciences of the United States of America, 86, 4644–4648.

    Article  Google Scholar 

  • Li, H., Cao, Y., Petzold, L. R., & Gillespie, D. T. (2008). Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnology Progress, 24(1), 56–61.

    Article  Google Scholar 

  • Mansky, L., & Temin, H. (1995). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of Virology, 69, 5087–5094.

    Google Scholar 

  • Mateus, D., Gallois, J. P., Comet, J. P., & Le Gall, P. (2007). Symbolic modeling of genetic regulatory networks. Journal of Bioinformatics and Computational Biology, 5(2B), 627–640.

    Article  Google Scholar 

  • Matsuyama, T., Kobayashi, N., & Yamamoto, N. (1991). Cytokines and HIV infection: is AIDS a tumor necrosis factor disease? AIDS, 5(12), 1405–1417.

    Article  Google Scholar 

  • Michie, C. A., McLean, A., Alcock, C., & Beverly, P. C. L. (1992). Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature, 360, 264.

    Article  Google Scholar 

  • Mittler, J. E., Markowitz, M., Ho, D. D., & Perelson, A. S. (1999). Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS, 13(11), 1415–1417.

    Article  Google Scholar 

  • Murray, J. M., Kaufmann, G., Kelleher, A. D., & Cooper, D. A. (1998). A model of primary HIV infection. Mathematical Biosciences, 154(5), 57–85.

    Article  MATH  Google Scholar 

  • Ogg, G., Jin, X., Bonhoeffer, S., Moss, P., Nowak, M., Monard, S., Segal, J. P., Cao, Y., Rowland-Jones, S. L., Hurley, A., Markowitz, M., Ho, D. D., McMichael, A. J., & Nixon, D. F. (1999). Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. Journal of Virology, 73, 797–800.

    Google Scholar 

  • Pantaleo, G., Graziosi, C., & Fauci, A. S. (1993). The immunopathogenesis of human immunodeficiency virus infection. The New England Journal of Medicine, 328, 327–335.

    Article  Google Scholar 

  • Pavlakis, G. N., Valentin, A., Morrow, M., & Yarchoan, R. (2004). Differential effects of TNF on HIV-1 expression: R5 inhibition and implications for viral evolution. Frederick: International Conference AIDS.

    Google Scholar 

  • Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., & Ho, D. D. (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271, 1582–1586.

    Article  Google Scholar 

  • Phillips, B. N. (1996). Reduction of HIV concentration during acute infection: independence from a specific immune response. Science, 271(5248), 497–499.

    Article  Google Scholar 

  • Phillips, R. E., Rowland-Jones, S., Nixon, D. F., Gotch, F. M., Edwards, J. P., et al. (1991). Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature, 354, 453–459.

    Article  Google Scholar 

  • Ramratnam, B., Mittler, J. E., Zhang, L., Boden, D., Hurley, A., Fang, F., Macken, C. A., Perelson, A. S., Markowitz, M., & Ho, D. D. (2000). The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Medicine, 6, 82–85.

    Article  Google Scholar 

  • Ramratnam, B., Ribeiro, R., He, T., Chung, C., Simon, V., Vanderhoeven, J., Hurley, A., Zhang, L., Perelson, A. S., Ho, D. D., & Markowitz, M. (2004). Intensification of antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and decreases, but does not eliminate, ongoing virus replication. Journal of Acquired Immune Deficiency Syndrome, 35, 33–37.

    Article  Google Scholar 

  • Regev, A., & Shapiro, E. (2002). Cellular abstractions: cells as computation. Nature, 419, 343.

    Article  Google Scholar 

  • Ribeiro, R. M., Mohri, H., Ho, D. D., & Perelson, A. S. (2002a). Modeling deuterated glucose labeling of T-lymphocytes. Bulletin of Mathematical Biology, 64(2), 385–405.

    Article  Google Scholar 

  • Ribeiro, R. M., Mohri, H., Ho, D. D., & Perelson, A. S. (2002b). In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15572–15577.

    Article  Google Scholar 

  • Riddell, S. R., Watanabe, K. S., Goodrich, J. M., Li, C. R., Agha, M. E., & Greenberg, P. D. (1992). Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science, 257, 238–241.

    Article  Google Scholar 

  • Schmitz, J., Kuroda, M., Santra, S., Sasseville, V., Simon, M., et al. (1999). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science, 283, 857–860.

    Article  Google Scholar 

  • Sguanci, L., Bagnoli, F., & Lió, P. (2007). Modeling HIV quasispecies evolutionary dynamics. BMC Evolutionary Biology, 7(2), S5.

    Article  Google Scholar 

  • Siliciano, J. D., Kajdas, J., Finzi, D., Quinn, T. C., Chadwick, K., et al. (2003). Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4(+) T cells. Nature Medicine, 9, 727–728.

    Article  Google Scholar 

  • Sorathiya, A., Bracciali, A., & Lió, P. (2010). Formal reasoning on qualitative models of coinfection of HIV and tuberculosis and HAART therapy. BMC Bioinformatics, 11(1), S67.

    Article  Google Scholar 

  • Stafford, M. A., Corey, L., Cao, Y., Daar, E. S., Ho, D. D., & Perelson, A. S. (2000). Modeling plasma virus concentration during primary HIV infection. Journal of Theoretical Biology, 203(3), 285–301.

    Article  Google Scholar 

  • Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., & Shaw, G. M. (1995). Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 373, 117–122.

    Article  Google Scholar 

  • Weinberger, L., & Shenk, T. (2007). An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLoS Biology, 5, e9.

    Article  Google Scholar 

  • Weinberger, A. D., Perelson, A. S., Ribeiro, R. M., & Weinberger, L. S. (2009). Accelerated immunodeficiency by anti-CCR5 treatment in HIV infection. PLoS Computational Biology, 5(8), e1000467.

    Article  Google Scholar 

  • Wiegel, F. W., & Perelson, A. S. (2004). Some scaling principles for the immune system. Immunology and Cell Biology, 82, 127–131.

    Article  Google Scholar 

  • Wodarz, D., & Nowak, M. A. (2002). HIV dynamics and evolution. BioEssays, 24, 1178–1187.

    Article  Google Scholar 

  • Zhang, L., Dailey, P. J., He, T., Gettie, A., Bonhoeffer, S., Perelson, A. S., & Ho, D. D. (1999a). Rapid clearance of simian immunodeficiency virus particles from plasma of rhesus macaques. Journal of Virology, 73(1), 855–860.

    Google Scholar 

  • Zhang, L., Ramratnam, B., Tenner-Racz, K., He, Y., Vesanen, M., et al. (1999b). Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. New England Journal of Medicine, 340, 1605–1613.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Sorathiya.

Additional information

This project is supported by EC IST SOCIALNETS—Grant agreement number 217141.

Andrea Bracciali has been supported by an EMBO Short Term Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorathiya, A., Bracciali, A. & Liò, P. An integrated modelling approach for R5–X4 mutation and HAART therapy assessment. Swarm Intell 4, 319–340 (2010). https://doi.org/10.1007/s11721-010-0046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-010-0046-4

Keywords

Navigation