Skip to main content
Log in

The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

This paper discusses the adoption of Artificial Intelligence-based techniques to estimate seismic damage, not with the goal of replacing existing approaches, but as a mean to improve the precision of empirical methods. For such, damage data collected in the aftermath of the 1998 Azores earthquake (Portugal) is used to develop a comparative analysis between damage grades obtained resorting to a classic damage formulation and an innovative approach based on Artificial Neural Networks (ANNs). The analysis is carried out on the basis of a vulnerability index computed with a hybrid seismic vulnerability assessment methodology, which is subsequently used as input to both approaches. The results obtained are then compared with real post-earthquake damage observation and critically discussed taking into account the level of adjustment achieved by each approach. Finally, a computer routine that uses the ANN as an approximation function is developed and applied to derive a new vulnerability curve expression. In general terms, the ANN developed in this study allowed to obtain much better approximations than those achieved with the original vulnerability approach, which has revealed to be quite non-conservative. Similarly, the proposed vulnerability curve expression was found to provide a more accurate damage prediction than the traditional analytical expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferreira T M, Maio R, Costa A A, Vicente R. Seismic vulnerability assessment of stone masonry façade walls: Calibration using fragility-based results and observed damage. Soil Dynamics and Earthquake Engineering, 2017, 103: 21–37

    Article  Google Scholar 

  2. Kappos A J. An overview of the development of the hybrid method for seismic vulnerability assessment of buildings. Structure and Infrastructure Engineering, 2016, 12(12): 1573–1584

    Article  Google Scholar 

  3. Ferreira T M, Mendes N, Silva R. Multiscale seismic vulnerability assessment and retrofit of existing masonry buildings. Buildings, 2019, 9(4): 91

    Article  Google Scholar 

  4. Rezaei S, Choobbasti A J. Liquefaction assessment using microtremor measurement, conventional method and artificial neural network (Case study: Babol, Iran). Frontiers of Structural and Civil Engineering, 2014, 8(3): 292–307

    Article  Google Scholar 

  5. Zakian P. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network. Frontiers of Structural and Civil Engineering, 2017, 11(4): 470–479

    Article  Google Scholar 

  6. Abdollahzadeh G, Shabanian S M. Experimental and numerical analysis of beam to column joints in steel structures. Frontiers of Structural and Civil Engineering, 2018, 12(4): 642–661

    Article  Google Scholar 

  7. Reyes J, Morales-Esteban A, Martínez-Álvarez F. Neural networks to predict earthquakes in Chile. Applied Soft Computing, 2013, 13(2): 1314–1328

    Article  Google Scholar 

  8. Huang C S, Hung S L, Wen C M, Tu T T. A neural network approach for structural identification and diagnosis of a building from seismic response data. Earthquake Engineering & Structural Dynamics, 2003, 32(2): 187–206

    Article  Google Scholar 

  9. Molas G L, Yamazaki F. Neural networks for quick earthquake damage estimation. Earthquake Engineering & Structural Dynamics, 1995, 24(4): 505–516

    Article  Google Scholar 

  10. Bani-Hani K, Ghaboussi J, Schneider S P. Experimental study of identification and control of structures using neural network. Part 2: Control. Earthquake Engineering & Structural Dynamics, 1999, 28(9): 1019–1039

    Google Scholar 

  11. Ferrario E, Pedroni N, Zio E, Lopez-Caballero F. Bootstrapped Artificial Neural Networks for the seismic analysis of structural systems. Structural Safety, 2017, 67: 70–84

    Article  Google Scholar 

  12. Morfidis K, Kostinakis K. Approaches to the rapid seismic damage prediction of R/C buildings using artificial neural networks. Engineering Structures, 2018, 165: 120–141

    Article  Google Scholar 

  13. Morfidis K, Kostinakis K. Seismic parameters’ combinations for the optimum prediction of the damage state of R/C buildings using neural networks. Advances in Engineering Software, 2017, 106: 1–16

    Article  Google Scholar 

  14. Vazirizade S M, Nozhati S, Zadeh M A. Seismic reliability assessment of structures using artificial neural network. Journal of Building Engineering, 2017, 11: 230–235

    Article  Google Scholar 

  15. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359

    Article  Google Scholar 

  16. Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua 2019; 59(2): 433–456

    Article  Google Scholar 

  17. Wang Z, Pedroni N, Zentner I, Zio E. Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment. Engineering Structures, 2018, 162: 213–225

    Article  Google Scholar 

  18. Estêvão J M C. Feasibility of using neural networks to obtain simplified capacity curves for seismic assessment. Buildings, 2018, 8(11): 151–164

    Article  Google Scholar 

  19. Wood H O, Neumann F. Modified Mercalli intensity scale of 1931. Bulletin of the Seismological Society of America, 1931, 21(4): 277–283

    Google Scholar 

  20. Ferreira T M, Maio R, Vicente R. Seismic vulnerability assessment of the old city centre of Horta, Azores: Calibration and application of a seismic vulnerability index method. Bulletin of Earthquake Engineering, 2017, 15(7): 2879–2899

    Article  Google Scholar 

  21. Oliveira C S, Costa A, Nunes J C. The 1998 Açores Earthquake: A Decade Later. São Miguel: Azores Regional Government, 2008 (in Portuguese)

    Google Scholar 

  22. Zonno G, Oliveira C S, Ferreira M A, Musacchio G, Meroni F, Mota-de-Sá F, Neves F. Assessing seismic damage through stochastic simulation of ground shaking: The case of the 1998 Faial Earthquake (Azores Islands). Surveys in Geophysics, 2010, 31(3): 361–381

    Article  Google Scholar 

  23. Bernardini A, Giovinazzi S, Lagomarsino S, Parodi S. Vulnerability and damage prediction at the territorial scale according to a macroseismic methodology consistent with the EMS-98 scale. In: Proceedings of the 12th Conference of the Italian National Association of Earthquake Engineering. Pisa: ANIDIS, 2007

    Google Scholar 

  24. Grünthal G. European Macroseismic Scale 1998 (EMS-98). Luxembourg: European Center for Geodynamics and Seismology, 1998

    Google Scholar 

  25. Vicente R, Parodi S, Lagomarsino S, Varum H, Silva J A R M. Seismic vulnerability and risk assessment: Case study of the historic city centre of Coimbra, Portugal. Bulletin of Earthquake Engineering, 2011, 9(4): 1067–1096

    Article  Google Scholar 

  26. Lagomarsino S, Giovinazzi S. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering, 2006, 4(4): 415–443

    Article  Google Scholar 

  27. Bramerini F, Di Pasquale G, Orsini A, Pugliese A, Romeo R, Sabetta F. Seismic Risk of the Italian Territory. Proposal for a Methodology and Preliminary Results. Technical Report N. SSN/RT/95/01. Roma, 1995 (in Italian)

    Google Scholar 

  28. Drew P J, Monson J R T. Artificial neural networks. Surgery, 2000, 127(1): 3–11

    Article  Google Scholar 

  29. Werbos P J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Cambridge: Harvard University, 1974

    Google Scholar 

  30. Estêvão J M C. Computer Model for Buildings Seismic Risk Assessment. Lisbon: Instituto Superior Técnico, UTL, 1998 (in Portuguese)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Portuguese Foundation for Science and Technology (FCT) through the postdoctoral Grant SFRH/ BPD/122598/2016. The authors acknowledge to the Society of Promotion for Housing and Infrastructures Rehabilitation (SPRHI) and to the Regional Secretariat for Housing and Equipment (SRHE) of Faial for their support and contribution to the development of this work. They would also like to express their gratitude to the anonymous reviewer for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Miguel Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, T.M., Estêvão, J., Maio, R. et al. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry. Front. Struct. Civ. Eng. 14, 609–622 (2020). https://doi.org/10.1007/s11709-020-0623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-020-0623-6

Keywords

Navigation