Skip to main content
Log in

Computational methods for fracture in rock: a review and recent advances

  • Review
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

We present an overview of the most popular state-of-the-art computational methods available for modelling fracture in rock. The summarized numerical methods can be classified into three categories: Continuum Based Methods, Discrete Crack Approaches, and Block-Based Methods. We will not only provide an extensive review of those methods which can be found elsewhere but particularly address their potential in modelling fracture in rock mechanics and geotechnical engineering. In this context, we will discuss their key applications, assumptions, and limitations. Furthermore, we also address ‘general’ difficulties that may arise for simulating fracture in rock and fractured rock. This review will conclude with some final remarks and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpinteri A. Post-peak and post-bifurcation analysis of cohesive crack propagation. Engineering Fracture Mechanics, 1989, 32(2): 265–278

    Article  Google Scholar 

  2. Planas J, Elices M. Nonlinear fracture of cohesive materials. In: Current Trends in Concrete Fracture Research, Springer, 1991, 139–157

    Chapter  Google Scholar 

  3. Bažant Z P, Jirásek M. Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 2002, 128(11): 1119–1149

    Article  Google Scholar 

  4. Wheel M. A geometrically versatile finite volume formulation for plane elastostatic stress analysis. Journal of Strain Analysis for Engineering Design, 1996, 31(2): 111–116

    Article  Google Scholar 

  5. Selmin V. The node-centred finite volume approach: bridge between finite differences and finite elements. Computer Methods in Applied Mechanics and Engineering, 1993, 102(1): 107–138

    Article  MathSciNet  MATH  Google Scholar 

  6. Fallah N, Bailey C, Cross M, Taylor G. Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis. Applied Mathematical Modelling, 2000, 24(7): 439–455

    Article  MATH  Google Scholar 

  7. Bailey C, Cross M. A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh. International Journal for Numerical Methods in Engineering, 1995, 38(10): 1757–1776

    Article  MATH  Google Scholar 

  8. Mishev I D. Finite volume methods on voronoi meshes. Numerical Methods for Partial Differential Equations, 1998, 14(2): 193–212

    Article  MathSciNet  MATH  Google Scholar 

  9. Fryer Y, Bailey C, Cross M, Lai C H. A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh. Applied Mathematical Modelling, 1991, 15(11–12): 639–645

    Article  MATH  Google Scholar 

  10. Detournay C, Hart R. FLAC and numerical modelling in geomechanics. In: Proceedings of the International FLAC symposium on Numerical Modelling in Geomechanics, Minneapolis. Rotterdam: Balkema, 1999

    MATH  Google Scholar 

  11. Fang Z. A local degradation approach to the numerical analysis of brittle fractures in heterogeneous rocks. Dissertation for PhD degree. Imperial College London (University of London), 2001

    Google Scholar 

  12. Martino S, Prestininzi A, Scarascia Mugnozza G. Mechanisms of deep seated gravitational deformations: parameters from laboratory testing for analogical and numerical modeling. In: Proc. Eurock, 2001, 137–142

    Google Scholar 

  13. Kourdey A, Alheib M, Piguet J, Korini T. Evaluation of slope stability by numerical methods. The 17th International Mining Congress and Exhibition of Turkey, 2001, 705–710

    Google Scholar 

  14. Marmo B A, Wilson C J L. A verification procedure for the use of FLAC to study glacial dynamics and the implementation of an anisotropic flow law. In: Särkkä P, Eloranta P, eds. Rock Mechanics—A Challenge for Society. Lisse: Swetz and Zeitlinger, 2001

    Google Scholar 

  15. Jing L, Hudson J. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4): 409–427

    Article  Google Scholar 

  16. Wittke W, Sykes R. Rock Mechanics. Springer Berlin, 1990

    Book  Google Scholar 

  17. Peng W. The damage mechanics model for jointed rock mass and its nonlinear FEM analysis. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(3): 193–202 (in Chinese)

    Google Scholar 

  18. Zheng Y R, Zhao S Y. Application of strength reduction FEM in soil and rock slope. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381 (in Chinese)

    Google Scholar 

  19. Zhao S, Zheng Y, Deng W. Stability analysis on jointed rock slope by strength reduction FEM. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 254–260

    Google Scholar 

  20. Cai M, Horii H. A constitutive model and FEM analysis of jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(4): 351–359

    Article  Google Scholar 

  21. Bazant Z P, Cedolin L. Fracture mechanics of reinforced concrete. Journal of the Engineering Mechanics Division, 1980, 106(6): 1287–1306

    Google Scholar 

  22. Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rocks. Journal of Soil Mechanics & Foundations Division, 1968, 94(3): 637–660

    Google Scholar 

  23. Zienkiewicz O C, Best B, Dullage C, Stagg K G. Analysis of nonlinear problems in rock mechanics with particular reference to jointed rock systems. In: Proceedings of International Society of Rock Mechanics, 1970

    Google Scholar 

  24. Ghaboussi J, Wilson E, Isenberg J. Finite element for rock joints and interfaces. Journal of Soil Mechanics & Foundations Division, 1973, 99(10): 849–862

    Google Scholar 

  25. Desai C, Zaman M, Lightner J, Siriwardane H. Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19–43

    Article  Google Scholar 

  26. Goodman R E. Methods of geological engineering in discontinuous rocks. New York: West Publishing, 1976

    Google Scholar 

  27. Katona M G. A simple contact–friction interface element with applications to buried culverts. International Journal for Numerical and Analytical Methods in Geomechanics, 1983, 7(3): 371–384

    Article  MATH  Google Scholar 

  28. Bažant Z P. Why continuum damage is nonlocal: micromechanics arguments. Journal of Engineering Mechanics, 1991, 117(5): 1070–1087

    Article  Google Scholar 

  29. Peerlings R H J, de Borst R, Brekelmans W A M, de Vree J H P. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391–3403

    Article  MATH  Google Scholar 

  30. Peerlings R H J, de Borst R, Brekelmans W, Geers M. Localisation issues in local and nonlocal continuum approaches to fracture. European Journal of Mechanics. A, Solids, 2002, 21(2): 175–189

    Article  MathSciNet  MATH  Google Scholar 

  31. de Borst R, Pamin J, Geers M G. On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. European Journal of Mechanics. A, Solids, 1999, 18(6): 939–962

    Article  MATH  Google Scholar 

  32. Pasternak E, Dyskin A, Mühlhaus H B. Cracks of higher modes in Cosserat continua. International Journal of Fracture, 2006, 140(1–4): 189–199

    Article  MATH  Google Scholar 

  33. Etse G, Willam K. Failure analysis of elastoviscoplastic material models. Journal of Engineering Mechanics, 1999, 125(1): 60–69

    Article  Google Scholar 

  34. Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

    Article  MATH  Google Scholar 

  35. Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773–781

    Article  Google Scholar 

  36. Miihlhaus H B, Triantafyllidis T. Surface waves in a layered halfspace with bending stiffness. Developments in Geotechnical Engineering, 1987, 44: 277–290

    Article  Google Scholar 

  37. Mühlhaus H B. Application of Cosserat theory in numerical solutions of limit load problems. Archive of Applied Mechanics, 1989, 59(2): 124–137

    Google Scholar 

  38. Vardoulakis I, Mühlhaus H. Local rock surface instabilities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23: 379–383

    Article  Google Scholar 

  39. Rabczuk T. Computational methods for fracture in brittle and quasi-brittle solids: state of the art review and future perspectives. ISRN Applied Mathematics, 2013, 2013: 332–369

    Article  MathSciNet  MATH  Google Scholar 

  40. de Borst R. Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Engineering Fracture Mechanics, 2002, 69(2): 95–112

    Article  Google Scholar 

  41. Jirásek M, Zimmermann T. Analysis of rotating crack model. Journal of Engineering Mechanics, 1998, 124(8): 842–851

    Article  Google Scholar 

  42. Jirásek M, Zimmermann T. Rotating crack model with transition to scalar damage. Journal of Engineering Mechanics, 1998, 124(3): 277–284

    Article  Google Scholar 

  43. Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354

    Article  MATH  Google Scholar 

  44. Ohmenhäuser F, Weihe S, Kröplin B. Algorithmic implementation of a generalized cohesive crack model. Computational Materials Science, 1999, 16(1): 294–306

    Article  Google Scholar 

  45. Carpinteri A, Chiaia B, Cornetti P. A scale-invariant cohesive crack model for quasi-brittle materials. Engineering Fracture Mechanics, 2002, 69(2): 207–217

    Article  Google Scholar 

  46. François M, Royer-Carfagni G. Structured deformation of damaged continua with cohesive-frictional sliding rough fractures. European Journal of Mechanics. A, Solids, 2005, 24(4): 644–660

    Article  MathSciNet  MATH  Google Scholar 

  47. de Borst R, Remmers J J, Needleman A. Mesh-independent discrete numerical representations of cohesive-zone models. Engineering Fracture Mechanics, 2006, 73(2): 160–177

    Article  Google Scholar 

  48. Zhuang X, Huang R, Liang C, Rabczuk T. A coupled thermohydro-mechanical model of jointed hard rock for compressed air energy storage. Mathematical Problems in Engineering, 2014, 179169

    Google Scholar 

  49. Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23

    Article  Google Scholar 

  50. Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three-dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

    Article  Google Scholar 

  51. Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74: 30–38

    Article  Google Scholar 

  52. Talebi H, Silani M, Bordas S P, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    Article  MathSciNet  Google Scholar 

  53. Budarapu P R, Gracie R, Bordas S P, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Article  Google Scholar 

  54. Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  55. Talebi H, Silani M, Bordas S P, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

    Article  Google Scholar 

  56. Belytschko T, Lin J I. A three-dimensional impact-penetration algorithm with erosion. Computers & Structures, 1987, 25(1): 95–104

    Article  MATH  Google Scholar 

  57. Camacho G T, Ortiz M. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 1996, 33(20): 2899–2938

    Article  MATH  Google Scholar 

  58. Xu X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111–132

    Article  Google Scholar 

  59. Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis. Computer Methods in Applied Mechanics and Engineering, 1987, 61(2): 189–214

    Article  MATH  Google Scholar 

  60. Pandolfi A, Krysl P, Ortiz M. Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. International Journal of Fracture, 1999, 95(1–4): 279–297

    Article  Google Scholar 

  61. Pandolfi A, Guduru P, Ortiz M, Rosakis A. Three dimensional cohesive-element analysis and experiments of dynamic fracture in c300 steel. International Journal of Solids and Structures, 2000, 37 (27): 3733–3760

    Article  Google Scholar 

  62. Zhou F, Molinari J F. Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. International Journal for Numerical Methods in Engineering, 2004, 59(1): 1–24

    Article  MATH  Google Scholar 

  63. Falk M L, Needleman A, Rice J R. A critical evaluation of cohesive zone models of dynamic fracture. Journal de Physique. IV, 2001, 11(PR5): Pr5–43–Pr5–50

    Article  Google Scholar 

  64. Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315

    Article  MathSciNet  MATH  Google Scholar 

  65. Areias P, Rabczuk T, Camanho P. Finite strain fracture of 2d problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63

    Article  Google Scholar 

  66. Areias P, Rabczuk T, Dias-da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

    Article  Google Scholar 

  67. Areias P, Rabczuk T, Camanho P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

    Article  MATH  Google Scholar 

  68. Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  69. Areias P, Rabczuk T. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41

    Article  Google Scholar 

  70. Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018

    Article  MathSciNet  MATH  Google Scholar 

  71. Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350

    Article  MathSciNet  Google Scholar 

  72. Areias P, Msekh M, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

    Article  Google Scholar 

  73. Gens A, Carol I, Alonso E. Rock joints: FEM implementation and applications. Studies in Applied Mechanics, 1995, 42: 395–420

    Article  Google Scholar 

  74. Belytschko T, Fish J, Engelmann B E. A finite element with embedded localization zones. Computer Methods in Applied Mechanics and Engineering, 1988, 70(1): 59–89

    Article  MATH  Google Scholar 

  75. Dvorkin E N, Cuitio A M, Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. International Journal for Numerical Methods in Engineering, 1990, 30(3): 541–564

    Article  MATH  Google Scholar 

  76. Feist C, Hofstetter G. Three-dimensional fracture simulations based on the SDA. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(2): 189–212

    Article  MATH  Google Scholar 

  77. Sancho JM, Planas J, Fathy AM, Galvez J C, Cendon D A. Threedimensional simulation of concrete fracture using embedded crack elements without enforcing crack path continuity. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(2): 173–187

    Article  MATH  Google Scholar 

  78. Jirásek M. Comparative study on finite elements with embedded discontinuities. Computer Methods in Applied Mechanics and Engineering, 2000, 188(1): 307–330

    Article  MATH  Google Scholar 

  79. Linder C, Zhang X. Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials. Computer Methods in Applied Mechanics and Engineering, 2014, 273: 143–160

    Article  MATH  Google Scholar 

  80. Linder C, Armero F. Finite elements with embedded strong discontinuities for the modeling of failure in solids. International Journal for Numerical Methods in Engineering, 2007, 72(12): 1391–1433

    Article  MathSciNet  MATH  Google Scholar 

  81. Oliver J, Huespe A, Blanco S, Linero D. Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach. Computer Methods in Applied Mechanics and Engineering, 2006, 195(52): 7093–7114

    Article  MATH  Google Scholar 

  82. Foster C, Borja R, Regueiro R. Embedded strong discontinuity finite elements for fractured geomaterials with variable friction. International Journal for Numerical Methods in Engineering, 2007, 72(5): 549–581

    Article  MathSciNet  MATH  Google Scholar 

  83. Nikolic M, Ibrahimbegovic A. Rock mechanics model capable of representing initial heterogeneities and full set of 3d failure mechanisms. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 209–227

    Article  MathSciNet  Google Scholar 

  84. Saksala T. Rate-dependent embedded discontinuity approach incorporating heterogeneity for numerical modeling of rock fracture. Rock Mechanics and Rock Engineering, 2015, 48(4): 1605–1622

    Article  Google Scholar 

  85. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MATH  Google Scholar 

  86. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150

    Article  MATH  Google Scholar 

  87. Melenk J M, Babuška I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 289–314

    Article  MathSciNet  MATH  Google Scholar 

  88. Rabinovich D, Givoli D, Vigdergauz S. Crack identification by arrival timeusing XFEM and a genetic algorithm. International Journal for Numerical Methods in Engineering, 2009, 77(3): 337–359

    Article  MathSciNet  MATH  Google Scholar 

  89. Béchet E, Scherzer M, Kuna M. Application of the x-FEM to the fracture of piezoelectric materials. International Journal for Numerical Methods in Engineering, 2009, 77(11): 1535–1565

    Article  MathSciNet  MATH  Google Scholar 

  90. Mayer U M, Gerstenberger A, Wall W A. Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. International Journal for Numerical Methods in Engineering, 2009, 79(7): 846–869

    Article  MATH  Google Scholar 

  91. Verhoosel C V, Remmers J J, Gutiérrez M A. A partition of unitybased multiscale approach for modelling fracture in piezoelectric ceramics. International Journal for Numerical Methods in Engineering, 2010, 82(8): 966–994

    Article  MATH  Google Scholar 

  92. Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    Article  MathSciNet  Google Scholar 

  93. Zheng A X, Luo X Q, Shen H. Numerical simulation and analysis of deformation and failure of jointed rock slopes by extended finite element method. Rock and Soil Mechanics, 2013, 34(8): 2371–2376 (in Chinese)

    Google Scholar 

  94. Wan L L, Yü T T. Pre-processing of extended finite element method for discontinuous rock masses. Rock and Soil Mechanics, 2011, 32: 772–778 (in Chinese)

    Google Scholar 

  95. Goodarzi M, Mohammadi S, Jafari A. Numerical analysis of rock fracturing by gas pressure using the extended finite element method. Petroleum Science, 2015, 12(2): 304–315

    Article  Google Scholar 

  96. Zhuang X, Chun J, Zhu H. A comparative study on unfilled and filled crack propagation for rock-like brittle material. Theoretical and Applied Fracture Mechanics, 2014, 72: 110–120

    Article  Google Scholar 

  97. Réthoré J, Borst R, Abellan M A. A two-scale approach for fluid flow in fractured porous media. International Journal for Numerical Methods in Engineering, 2007, 71(7): 780–800

    Article  MathSciNet  MATH  Google Scholar 

  98. Song C, Wolf J P. The scaled boundary finite-element methodalias consistent infinitesimal finite-element cell method for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3–4): 329–355

    Article  MathSciNet  MATH  Google Scholar 

  99. Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599

    Article  MATH  Google Scholar 

  100. Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92: 242–256

    Article  Google Scholar 

  101. Hughes T J, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39): 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  102. Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

    Article  Google Scholar 

  103. Nguyen-Thanh N, Valizadeh N, Nguyen M, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff–love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

    Article  MathSciNet  MATH  Google Scholar 

  104. Shi G H. Manifold method of material analysis. Tech. rep., DTIC Document, 1992

    Google Scholar 

  105. Shi G H. Modeling rock joints and blocks by manifold method. In: The 33th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 1992

    Google Scholar 

  106. Ma G, An X, He L. The numerical manifold method: a review. International Journal of Computational Methods, 2010, 7(1): 1–32

    Article  MathSciNet  MATH  Google Scholar 

  107. Li S, Cheng Y, Wu Y F. Numerical manifold method based on the method of weighted residuals. Computational Mechanics, 2005, 35 (6): 470–480

    Article  MATH  Google Scholar 

  108. Lin J S. A mesh-based partition of unity method for discontinuity modeling. Computer Methods in Applied Mechanics and Engineering, 2003, 192(11): 1515–1532

    Article  MATH  Google Scholar 

  109. Terada K, Asai M, Yamagishi M. Finite cover method for linear and non-linear analyses of heterogeneous solids. International Journal for Numerical Methods in Engineering, 2003, 58(9): 1321–1346

    Article  MATH  Google Scholar 

  110. Terada K, Kurumatani M. Performance assessment of generalized elements in the finite cover method. Finite Elements in Analysis and Design, 2004, 41(2): 111–132

    Article  Google Scholar 

  111. Terada K, Ishii T, Kyoya T, Kishino Y. Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures. Computational Mechanics, 2007, 39(2): 191–210

    Article  MATH  Google Scholar 

  112. Zheng W, Zhuang X, Tannant D D, Cai Y, Nunoo S. Unified continuum/discontinuum modeling framework for slope stability assessment. Engineering Geology, 2014, 179: 90–101

    Article  Google Scholar 

  113. Kurumatani M, Terada K. Finite cover method with multi-cover layers for the analysis of evolving discontinuities in heterogeneous media. International Journal for Numerical Methods in Engineering, 2009, 79(1): 1–24

    Article  MATH  Google Scholar 

  114. Gao H, Cheng Y. A complex variable meshless manifold method for fracture problems. International Journal of Computational Methods, 2010, 7(1): 55–81

    Article  MathSciNet  MATH  Google Scholar 

  115. Zhang H, Li L, An X, Ma G. Numerical analysis of 2D crack propagation problems using the numerical manifold method. Engineering Analysis with Boundary Elements, 2010, 34(1): 41–50

    Article  MathSciNet  MATH  Google Scholar 

  116. Chen G, Ohnishi Y, Ito T. Development of high-order manifold method. International Journal for Numerical Methods in Engineering, 1998, 43(4): 685–712

    Article  MATH  Google Scholar 

  117. Jiang Q, Zhou C, Li D. A three-dimensional numerical manifold method based on tetrahedral meshes. Computers & Structures, 2009, 87(13): 880–889

    Article  Google Scholar 

  118. Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256

    Article  MathSciNet  MATH  Google Scholar 

  119. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75 (16): 4740–4758

    Article  Google Scholar 

  120. Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39 (6): 743–760

    Article  MATH  Google Scholar 

  121. Rabczuk T, Areias P, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MathSciNet  MATH  Google Scholar 

  122. Zi G, Rabczuk T, Wall W. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

    Article  MATH  Google Scholar 

  123. Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

    Article  MATH  Google Scholar 

  124. Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49

    Article  MATH  Google Scholar 

  125. Rabczuk T, Areias P. A new approach for modelling slip lines in geological materials with cohesive models. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30 (11): 1159–1172

    Article  MATH  Google Scholar 

  126. Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23): 1391–1411

    Article  Google Scholar 

  127. Mossaiby F, Bazrpach M, Shojaei A. Extending the method of exponential basis functions to problems with singularities. Engineering Computations, 2015, 32(2): 406–423

    Article  Google Scholar 

  128. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37): 2437–2455

    Article  MATH  Google Scholar 

  129. Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  130. Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29): 2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  131. Ai W, Augarde C E. An adaptive cracking particle method for 2D crack propagation. International Journal for Numerical Methods in Engineering, 2016, 108(13): 1626–1648

    Article  MathSciNet  Google Scholar 

  132. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid–structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

    MathSciNet  MATH  Google Scholar 

  133. Zhu H, Zhuang X, Cai Y, Ma G. High rock slope stability analysis using the enriched meshless shepard and least squares method. International Journal of Computational Methods, 2011, 8(2): 209–228

    Article  MathSciNet  MATH  Google Scholar 

  134. Zhuang X, Augarde C, Mathisen K. Fracture modeling using meshless methods and level sets in 3D: framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

    Article  MathSciNet  MATH  Google Scholar 

  135. Zhuang X, Huang F, Zhu H. Modelling 2D joint propagation in rock using the meshless methods and level sets. Chinese Journal of Rock Mechanics and Engineering, 2012, 31: 21872196 (in Chinese)

    Google Scholar 

  136. Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209

    Article  MathSciNet  MATH  Google Scholar 

  137. Silling S A, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007, 88(2): 151–184

    Article  MathSciNet  MATH  Google Scholar 

  138. Ganzenmüller G C, Hiermaier S, May M. On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics. Computers & Structures, 2015, 150: 71–78

    Article  MATH  Google Scholar 

  139. Bessa M, Foster J, Belytschko T, LiuWK. A meshfree unification: reproducing kernel peridynamics. Computational Mechanics, 2014, 53(6): 1251–1264

    Article  MathSciNet  MATH  Google Scholar 

  140. Shojaei A, Mudric T, Zaccariotto M, Galvanetto U. A coupled meshless finite point/peridynamic method for 2D dynamic fracture analysis. International Journal of Mechanical Sciences, 2016, 119: 419–431

    Article  Google Scholar 

  141. Bobaru F, Yang M, Alves L F, Silling S A, Askari E, Xu J. Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering, 2009, 77(6): 852–877

    Article  MATH  Google Scholar 

  142. Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 108 (12): 1451–1476

  143. Ren H, Zhuang X, Rabczuk T. Dual-horizon peridynamics: a stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782

    Article  MathSciNet  Google Scholar 

  144. Ha Y D, Lee J, Hong J W. Fracturing patterns of rock-like materials in compression captured with peridynamics. Engineering Fracture Mechanics, 2015, 144: 176–193

    Article  Google Scholar 

  145. Wang Y, Zhou X, Xu X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 2016, 163: 248–273

    Article  Google Scholar 

  146. Zhou X P, Wang Y T. Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics. International Journal of Rock Mechanics and Mining Sciences, 2016, 89: 235–249

    Article  Google Scholar 

  147. Ren H, Zhuang X, Rabczuk T. A new peridynamic formulation with shear deformation for elastic solid. Journal of Micromechanics and Molecular Physics, 2016, 1(02): 1650009

    Article  Google Scholar 

  148. Mossaiby F, Shojaei A, Zaccariotto M, Galvanetto U. OpenCL implementation of a high performance 3D peridynamic model on graphics accelerators. Computers & Mathematics with Applications, 2017, 1856–1870

    Google Scholar 

  149. Brebbia C A, Walker S. Boundary Element Techniques in Engineering. Elsevier, 1980

    MATH  Google Scholar 

  150. Mi Y, Aliabadi M. Three-dimensional crack growth simulation using BEM. Computers & Structures, 1994, 52(5): 871–878

    Article  MATH  Google Scholar 

  151. Simpson R N, Bordas S P, Trevelyan J, Rabczuk T. A twodimensional isogeometric boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 2012, 209: 87–100

    Article  MathSciNet  MATH  Google Scholar 

  152. Lafhaj Z, Shahrour I. Use of the boundary element method for the analysis of permeability tests in boreholes. Engineering Analysis with Boundary Elements, 2000, 24(9): 695–698

    Article  MATH  Google Scholar 

  153. Nguyen B, Tran H, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275

    Article  MathSciNet  Google Scholar 

  154. Cundall P A. A computer model for simulating progressive largescale movements in blocky rock systems. In: Procedings of the Symposio of the International Society of Rock Mechanics, Nancy, 1971

    Google Scholar 

  155. Cundall P A. Rational design of tunnel supports: a computer model for rock mass behavior using interactive graphics for the input and output of geometrical data. Tech. rep., DTIC Document, 1974, 1–195

    Google Scholar 

  156. Cundall P A, Strack O D. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47–65

    Article  Google Scholar 

  157. Cundall P A. Formulation of a three-dimensional distinct element model part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25: 107–116

    Google Scholar 

  158. Zhu H, Wu W, Zhuang X, Cai Y, Rabczuk T. Method for estimating normal contact parameters in collision modeling using discontinuous deformation analysis. International Journal of Geomechanics, 2016, 17(5): E4016011

    Article  Google Scholar 

  159. Wriggers P. Computational Contact Mechanics. Springer Science & Business Media, 2006

    Book  MATH  Google Scholar 

  160. Cundall P A, Hart R D. Numerical modelling of discontinue. Engineering Computations, 1992, 9(2): 101–113

    Article  Google Scholar 

  161. Curran J H, Ofoegbu G I. Modeling discontinuities in numerical analysis. Comprehensive Rock Engineering, 1993, 1: 443–468

    Google Scholar 

  162. Walton O R. Force models for particle-dynamics simulations of granular materials. In: Mobile Particulate Systems. Springer Netherlands, 1995, 287: 367–380

    Google Scholar 

  163. Luding S. About contact force-laws for cohesive frictional materials in 2D and 3D. In: Procedings of Behavior of granular media, 2006, 9: 137–147

    Google Scholar 

  164. Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 283–353

    Article  Google Scholar 

  165. Huang D, Wang J, Liu S. A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses. Granular Matter, 2015, 17(6): 775–791

    Article  Google Scholar 

  166. Lorig L. A simple numerical representation of fully bonded passive rock reinforcement for hard rocks. Computers and Geotechnics, 1985, 1(2): 79–97

    Article  Google Scholar 

  167. Kochen R, Andrade J C O. Predicted behavior of a subway station in weathered rock. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3): 160–e1–160.e13

    Google Scholar 

  168. Souley M, Hoxha D, Homand F. Distinct element modelling of an underground excavation using a continuum damage model. International Journal of Rock Mechanics and Mining Sciences, 1999, 35(4–5): 442–443

    Google Scholar 

  169. Rawlings C, Barton N, Bandis S, Addis M, Gutierrez M. Laboratory and numerical discontinuum modeling of wellbore stability. Journal of Petroleum Technology, 1993, 45(11): 1086–1092

    Article  Google Scholar 

  170. Gutierrez M, Makurat A. Coupled HTM modelling of cold water injection in fractured hydro-carbon reservoirs. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3): 113.e1–113.e15

    Google Scholar 

  171. Jing L. Numerical modelling of jointed rock masses by distinct element method for two-and three-dimensional problems. Dissertation for PhD degree. Luleå University of Technology, Sweden

  172. Harper T, Last N. Response of fractured rock subject to fluid injection part III. Practical application. Tectonophysics, 1990, 172 (1–2): 53–65

    Article  Google Scholar 

  173. Shi G H. Stereographic method for the stability analysis of the discontinuous rocks. Scientia Sinica, 1977, 3: 260–271

    Google Scholar 

  174. Warburton P M. Some modern developments in block theory for rock engineering. Analysis and Design Methods: Comprehensive Rock Engineering: Principles, Practice and Projects 2, 2013: 293–315

    Google Scholar 

  175. Goodman R E, Shi G H. Block Theory and Its Application to Rock Engineering. Prentice-Hall Englewood Cliffs, NJ, 1985

    Google Scholar 

  176. Shi G H, Goodman R E. The key blocks of unrolled joint traces in developed maps of tunnel walls. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13 (2): 131–158

    Article  Google Scholar 

  177. Karaca M, Goodman R. The influence of water on the behaviour of a key block. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30: 1575–1578

    Article  Google Scholar 

  178. Jakubowski J, Tajdus A. The 3D Monte Carlo simulation of rigid block around a tunnel. In: Mechanics of Jointed and Faulted Rock. Rotterdam: Balkema, 1995, 551–6

    Google Scholar 

  179. Kuszmaul J, Goodman R. An analytical model for estimating key block sizes in excavations in jointed rock masses. In: Fractured and Jointed Rock Masses. Rotterdam: Balkema, 1995,19–26

    Google Scholar 

  180. Windsor C R. Block stability in jointed rock masses. In: Nedlands W A, ed. CSIRO Rock Mechanics Research Centre. Fractured and Jointed Rock Masses, Lake Tahoe, California. 1992, 65–72

    Google Scholar 

  181. Mauldon M, Chou K, Wu Y. Linear programming analysis of keyblock stability. In: Computer Methods and Advancements in Geomechanics, 1997, 1: 517–22

    Google Scholar 

  182. Wibowo J L. Consideration of secondary blocks in key-block analysis. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3): 333.e1–333.e2

    Google Scholar 

  183. Song J J, Lee C I, Seto M. Stability analysis of rock blocks around a tunnel using a statistical joint modeling technique. Tunnelling and Underground Space Technology, 2001, 16(4): 341–351

    Article  Google Scholar 

  184. Lee I M, Park J K. Stability analysis of tunnel key-block: a case study. Tunnelling and Underground Space Technology, 2000, 15 (4): 453–462

    Article  Google Scholar 

  185. Warburton P. Vector stability analysis of an arbitrary polyhedral rock block with any number of free faces. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18: 415–427

    Article  Google Scholar 

  186. Shi G H, Goodman R E. Two-dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(6): 541–556

    Article  MATH  Google Scholar 

  187. Shi G H. Three-dimensional discontinuous deformation analyses. In: DC Rocks 2001, The 38th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 2001

    Google Scholar 

  188. Zhang X, Lu M. Block-interfaces model for non-linear numerical simulations of rock structures. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 983–990

    Article  Google Scholar 

  189. Shyu K. Nodal-based discontinuous deformation analysis. Dissertation for PhD degree. University of California, Berkeley, 1993

    Google Scholar 

  190. Jing L. Formulation of discontinuous deformation analysis (DDA) an implicit discrete element model for block systems. Engineering Geology, 1998, 49(3): 371–381

    Article  Google Scholar 

  191. Lin C T, Amadei B, Jung J, Dwyer J. Extensions of discontinuous deformation analysis for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33: 671–694

    Article  Google Scholar 

  192. Kim Y I, Amadei B, Pan E. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(7): 949–970

    Article  Google Scholar 

  193. Jiang Q, Yeung M. A model of point-to-face contact for threedimensional discontinuous deformation analysis. Rock Mechanics and Rock Engineering, 2004, 37(2): 95–116

    Article  Google Scholar 

  194. Hsiung S M. Discontinuous deformation analysis (DDA) with nth order polynomial displacement functions. In: DC Rocks 2001, The 38th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 2001

    Google Scholar 

  195. Koo C, Chern J. The development of DDA with third order displacement function. In: Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Berkeley, CA. TSI Press: Albuquerque, 1996, 12–14

    Google Scholar 

  196. Tonon F. Analysis of single rock blocks for general failure modes under conservative and non-conservative forces. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(14): 1567–1608

    Article  MATH  Google Scholar 

  197. Tonon F, Asadollahi P. Validation of general single rock block stability analysis (bs3d) for wedge failure. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 627–637

    Article  Google Scholar 

  198. Nezami E G, Hashash Y M, Zhao D, Ghaboussi J. A fast contact detection algorithm for 3-D discrete element method. Computers and Geotechnics, 2004, 31(7): 575–587

    Article  Google Scholar 

  199. Shi G H. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Engineering Computations, 1992, 9(2): 157–168

    Article  MathSciNet  Google Scholar 

  200. Wu W, Zhu H, Zhuang X, Ma G, Cai Y. A multi-shell cover algorithm for contact detection in the three-dimensional discontinuous deformation analysis. Theoretical and Applied Fracture Mechanics, 2014, 72: 136–149

    Article  Google Scholar 

  201. Li H, Bai Y, Xia M, Ke F, Yin X. Damage localization as a possible precursor of earthquake rupture. Pure and Applied Geophysics, 2000, 157: 1929–1943

    Article  Google Scholar 

  202. Mühlhaus H, Sakaguchi H, Wei Y. Particle based modelling of dynamic fracture in jointed rock. In: Proceedings of the 9th international conference of the international association of computer methods and advances in geomechanics–IACMAG, 1997, 97: 207–216

    Google Scholar 

  203. Napier J, Dede T. A comparison between random mesh schemes and explicit growth rules for rock fracture simulation. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3): 217.e1–217.e3

    Google Scholar 

  204. Place D, Mora P. Numerical simulation of localisation phenomena in a fault zone. Pure and Applied Geophysics, 2000, 157, 11–12: 1821–1845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jenabidehkordi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenabidehkordi, A. Computational methods for fracture in rock: a review and recent advances. Front. Struct. Civ. Eng. 13, 273–287 (2019). https://doi.org/10.1007/s11709-018-0459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-018-0459-5

Keywords

Navigation