Skip to main content
Log in

Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration

  • Viewpoint
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Thibaut A, Chiara D. Is cooling the future of heating? 2020-12-13, available at website of iea gov

  2. Abas N, Kalair A R, Khan N, et al. Natural and synthetic refrigerants, global warming: a review. Renewable & Sustainable Energy Reviews, 2018, 90: 557–569

    Article  Google Scholar 

  3. Hawken P. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. Penguin Books, 2018

  4. Kobeco P, Kurtchatov I V. Dielectric properties of Rochelle salt crystal. Zeitschrift für Physik, 1930, 66: 192–205

    Google Scholar 

  5. Mischenko A S, Zhang Q, Scott J F, et al. Electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270–1271

    Article  Google Scholar 

  6. Neese B, Chu B, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823

    Article  Google Scholar 

  7. Qian X S, Lu S G, Li X, et al. Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Advanced Functional Materials, 2013, 23(22): 2894–2898

    Article  Google Scholar 

  8. Shi J, Han D, Li Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225

    Article  Google Scholar 

  9. Crossley S, Usui T, Nair B, et al. Direct electrocaloric measurement of 0. 9Pb(Mg1/3Nb2/3)O3−1.0.1PbTiO3 films using scanning thermal microscopy. Applied Physics Letters, 2016, 108(3): 032902

    Article  Google Scholar 

  10. Hou Y, Yang L, Qian X, et al. Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Philosophical Transactions-Royal Society. Mathematical, Physical, and Engineering Sciences, 2016, 374(2074): 20160055

    Article  Google Scholar 

  11. Moya X, Stern-Taulats E, Crossley S, et al. Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25(9): 1360–1365

    Article  Google Scholar 

  12. Chen X Z, Li X, Qian X S, et al. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer, 2013, 54(20): 5299–5302

    Article  Google Scholar 

  13. Qian X S, Ye H J, Zhang Y T, et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24(9): 1300–1305

    Article  Google Scholar 

  14. Nair B, Usui T, Crossley S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468–472

    Article  Google Scholar 

  15. Yang L, Qian X, Koo C, et al. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 2016, 22: 461–467

    Article  Google Scholar 

  16. Chen Y, Qian J, Yu J, et al. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32(30): 1907927

    Article  Google Scholar 

  17. Ma R, Zhang Z, Tong K, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357(6356): 1130–1134

    Article  Google Scholar 

  18. Meng Y, Zhang Z, Wu H, et al. A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5(12): 996–1002

    Article  Google Scholar 

  19. Gu H, Qian X, Li X, et al. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102(12): 122904

    Article  Google Scholar 

  20. Annapragada, S. R. High-efficiency solid-state heat pump module. 2017, available at website of energy gov

  21. Wang Y, Zhang Z, Usui T, et al. A high-performance solid-state electrocaloric cooling system. Science, 2020, 370(6512): 129–133

    Article  Google Scholar 

  22. Torelló A, Lheritier P, Usui T, et al. Giant temperature span in electrocaloric regenerator. Science, 2020, 370(6512): 125–129

    Article  Google Scholar 

  23. Cui H, Zhang Q, Bo Y, et al. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6(1): 258–268

    Article  Google Scholar 

  24. Hoyt T, Arens E, Zhang H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 2015, 88: 89–96

    Article  Google Scholar 

  25. Li Q, Shi J, Han D, et al. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190: 116806

    Article  Google Scholar 

  26. Shi J, Li Q, Gao T, et al. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2021, 121: 279–288

    Article  Google Scholar 

  27. Peng B, Zhang Q, Lyu Y, et al. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy, 2018, 47: 285–293

    Article  Google Scholar 

  28. Qian X, Han D, Zheng L, et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600(7890): 664–669

    Article  Google Scholar 

  29. Qian X, Ye H J, Yang T, et al. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 2015, 25(32): 5134–5139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshi Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X. Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration. Front. Energy 16, 19–22 (2022). https://doi.org/10.1007/s11708-022-0820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0820-1

Navigation