Skip to main content
Log in

Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Owing to the energy demands and global warming issue, employing more effective power cycles has become a responsibility. This paper presents a thermodynamical study of an irreversible Brayton cycle with the aim of optimizing the performance of the Brayton cycle. Moreover, four different schemes in the process of multi-objective optimization were suggested, and the outcomes of each scheme are assessed separately. The power output, the concepts of entropy generation, the energy, the exergy output, and the exergy efficiencies for the irreversible Brayton cycle are considered in the analysis. In the first scheme, in order to maximize the exergy output, the ecological function and the ecological coefficient of performance, a multi-objective optimization algorithm (MOEA) is used. In the second scheme, three objective functions including the exergetic performance criteria, the ecological coefficient of performance, and the ecological function are maximized at the same time by employing MOEA. In the third scenario, in order to maximize the exergy output, the exergetic performance criteria and the ecological coefficient of performance, a MOEA is performed. In the last scheme, three objective functions containing the exergetic performance criteria, the ecological coefficient of performance, and the exergy-based ecological function are maximized at the same time by employing multi-objective optimization algorithms. All the strategies are implemented via multi-objective evolutionary algorithms based on the NSGAII method. Finally, to govern the final outcome in each scheme, three well-known decision makers were employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Entropy Generation Through Heat and Fluid Flow. New York: Wiley, 1982

    Google Scholar 

  2. Cengel Y A, Boles M A. Thermodynamics: an Engineering Approach. 5th ed., New York: McGraw-Hill, 2011

    Google Scholar 

  3. Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  4. Ma Z, Turan A. Finite time thermodynamic modeling of an indirectly fired gas turbine cycle. In: 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2010

    Google Scholar 

  5. Ye X M. Effect of variable heat capacities on performance of an irreversible Miller heat engine. Frontiers in Energy, 2012, 6(3): 280–284

    Article  Google Scholar 

  6. Zheng S, Lin G. Optimization of power and efficiency for an irreversible diesel heat engine. Frontiers of Energy and Power Engineering in China, 2010, 4(4): 560–565

    Article  Google Scholar 

  7. Dobrovicescu A, Grosu L. Optimisation exergo-économique d’une turbine à gaz. Oil & Gas Science and Technology, 2012, 67(4): 661–670

    Article  Google Scholar 

  8. Grosu L, Dobre C, Petrescu S. Study of a Stirling engine used for domestic micro-cogeneration. International Journal of Energy Research, 2015, 39(9): 1280–1294

    Article  Google Scholar 

  9. Angulo-Brown F. An ecological optimization criterion for finitetime heat engines. Journal of Applied Physics, 1991, 69(11): 7465–7469

    Article  Google Scholar 

  10. Yan Z. Comment on “ecological optimization criterion for finitetime heat-engines”. Journal of Applied Physics, 1993, 73(7): 3583

    Article  Google Scholar 

  11. Ust Y. Performance analysis, optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion. Applied Thermal Engineering, 2009, 29(1): 47–55

    Article  Google Scholar 

  12. Ust Y. Effect of regeneration on the thermo-ecological performance analysis, optimization of irreversible air refrigerators. Heat & Mass Transfer, 2010, 46(4): 469–478

    Article  Google Scholar 

  13. Ust Y, Sahin B. Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion. International Journal of Refrigeration, 2007, 30(3): 527–534

    Article  Google Scholar 

  14. Ust Y, Akkaya A V, Safa A. Analysis of a vapor compression refrigeration system via exergetic performance coefficient criterion. Journal of the Energy Institute, 2016, 84(84): 66–72

    Google Scholar 

  15. Ust Y, Sahin B, Sogut O S. Performance analysis, optimization of an irreversible dual cycle based on an ecological coefficient of performance criterion. Applied Energy, 2005, 82(1): 23–39

    Article  Google Scholar 

  16. Ust Y, Sahin B, Kodal A. Ecological coefficient of performance ECOP optimization for generalized irreversible Carnot heat engines. Journal of the Energy Institute, 2005, 78(3): 145–151

    Article  Google Scholar 

  17. Ust Y, Safa A, Sahin B. Ecological performance analysis of an endoreversible regenerative Brayton heat-engine. Applied Energy, 2005, 80(3): 247–260

    Article  Google Scholar 

  18. Ust Y, Sahin B, Kodal A. Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion. Applied Energy, 2007, 84(11): 1079–1091

    Article  Google Scholar 

  19. Ust Y, Sahin B, Yilmaz T. Optimization of a regenerative gasturbine cogeneration system based on a new exergetic performance criterion: exergetic performance coefficient EPC. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 2007, 221(4): 447–456

    Article  Google Scholar 

  20. Ust Y, Sahin B, Kodal A, Akcay I H. Ecological coefficient of performance analysis, optimization of an irreversible regenerative-Brayton heat engine. Applied Energy, 2006, 83(6): 558–572

    Article  Google Scholar 

  21. Ust Y, Sogut S S, Sahin B. The effects of inter cooling, regeneration on thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. Journal of Physics D Applied Physics, 2006, 39(21): 4713–4721

    Article  Google Scholar 

  22. Ust Y, Sogut O S, Sahin B, Durmayaz A. Ecological coefficient of performance ECOP optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs. Journal of the Energy Institute, 2006, 79(1): 47–52

    Article  Google Scholar 

  23. Ust Y, Sahin B, Kodal A. Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. International Journal of Thermal Sciences, 2006, 45(1): 94–101

    Article  Google Scholar 

  24. Açıkkalp E. Models for optimum thermo-ecological criteria of actual thermal cycles. Thermal Science, 2012, 17(17): 915–930

    Google Scholar 

  25. Açıkkalp E, Yamık H. Limits and optimization of power input or output of actual thermal cycles. Entropy, 2013, 15(8): 3219–3248

    Article  Google Scholar 

  26. Özyer T, Zhang M, Alhajj R. Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation. Applied Intelligence, 2011, 35(1): 110–122

    Article  Google Scholar 

  27. Ombuki B, Ross B J, Hanshar F. Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence, 2006, 24(1): 17–30

    Article  Google Scholar 

  28. Blecic I, Cecchini A, Trunfio G. A decision support tool coupling a causal model and a multi-objective genetic algorithm. Applied Intelligence, 2007, 26(2): 125–137

    Article  Google Scholar 

  29. Van Veldhuizen D A, Lamont G B. Multi objective evolutionary algorithms analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125–147

    Article  Google Scholar 

  30. Konak A, Coit D W, Smith A E. Multi-objective optimization using genetic algorithms: a tutorial. Reliability Engineering & System Safety, 2006, 91(9): 992–1007

    Article  Google Scholar 

  31. Ahmadi M H, Hosseinzade H, Sayyaadi H, Mohammadi A H, Kimiaghalam F. Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy, 2013, 60(4): 313–322

    Article  Google Scholar 

  32. Ahmadi M H, Sayyaadi H, Mohammadi A H, Barranco-Jimenez M A. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Conversion & Management, 2013, 73(5): 370–380

    Article  Google Scholar 

  33. Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power. Energy Conversion & Management, 2013, 75(75): 282–291

    Google Scholar 

  34. Ahmadi M H, Dehghani S, Mohammadi A H, Feidt M, Barranco-Jimenez MA. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Conversion & Management, 2013, 75(11): 635–642

    Article  Google Scholar 

  35. Ahmadi MH, Ahmadi MA, Bayat R, Ashouri M, Feidt M. Thermoeconomic optimization of Stirling heat pump by using nondominated sorting genetic algorithm. Energy Conversion & Management, 2015, 91:315–322

    Google Scholar 

  36. Lazzaretto A, Toffolo A. Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design. Energy, 2004, 29(8): 1139–1157

    Article  Google Scholar 

  37. Toghyani S, Kasaeian A, Ahmadi M H. Multi-objective optimization of Stirling engine using non-ideal adiabatic method. Energy Conversion & Management, 2014, 80(5): 54–62

    Article  Google Scholar 

  38. Toffolo A, Lazzaretto A. Evolutionary algorithms for multiobjective energetic and economic optimization in thermal system design. Energy, 2002, 27(6): 549–567

    Article  Google Scholar 

  39. Ahmadi M H, Mohammadi A H, Dehghani S. Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis. Energy Conversion and Management, 2013, 76(12): 561–570

    Article  Google Scholar 

  40. Ahmadi MH, Ahmadi MA, Mohammadi A H, Feidt M, Pourkiaei S M. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Conversion and Management, 2014, 82(6): 351–360

    Article  Google Scholar 

  41. Ahmadi MH, Ahmadi MA, Mohammadi A H, Mehrpooya M, Feidt M. Thermodynamic optimization of Stirling heat pump based on multiple criteria. Energy Conversion and Management, 2014, 80(80): 319–328

    Article  Google Scholar 

  42. Ahmadi M H, Mohammadi A H, Dehghani S, Barranco-Jimenez M A. Multi-objective thermodynamic-based optimization of output power of solar dish-Stirling engine by implementing an evolutionary algorithm. Energy Conversion and Management, 2013, 75: 438–445

    Article  Google Scholar 

  43. Ahmadi MH, Mohammadi A H, Pourkiaei S M. Optimisation of the thermodynamic performance of the Stirling engine. International Journal of Ambient Energy, 2016, 37(2): 149–161

    Article  Google Scholar 

  44. Sayyaadi H, Ahmadi M H, Dehghani S. Optimal design of a solardriven heat engine based on thermal and ecological criteria. Journal of Energy Engineering, 2014, 141(3)

    Google Scholar 

  45. Soltani R, Keleshtery P M, Vahdati M, Khoshgoftarmanesh M H, Rosen M A, Amidpour M. Multi-objective optimization of a solarhybrid cogeneration cycle: application to CGAM problem. Energy Conversion & Management, 2014, 81(2): 60–71

    Article  Google Scholar 

  46. Ahmadi M H, Ahmadi M A, Mehrpooya M, Hosseinzade H, Feidt M. Thermodynamic and thermoeconomic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy Conversion & Management, 2014, 88:1051–1059

    Article  Google Scholar 

  47. Ahmadi M H, Ahmadi M A. Thermodynamic analysis and optimization of an irreversible ericsson cryogenic refrigerator cycle. Energy Conversion and Management, 2015, 89(89): 147–155

    Article  Google Scholar 

  48. Ahmadi M H, Ahmadi M A, Mehrpooya M, Sameti M. Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump. Energy Conversion and Management, 2015, 90: 175–183

    Article  Google Scholar 

  49. Ahmadi MH, Ahmadi MA, Feidt M. Performance optimization of a solar-driven multi-step irreversible brayton cycle based on a multiobjective genetic algorithm. Oil & Gas Science and Technology, 2014, 71(1): 1-11

    Google Scholar 

  50. Ahmadi M H, Ahmadi M A. Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII. Renewable & Sustainable Energy Reviews, 2016, 60: 784–794

    Article  Google Scholar 

  51. Ahmadi M H, Ahmadi M A, Mellit A, Pourfayaz F, Feidt M. Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. International Journal of Electrical Power & Energy Systems, 2016, 78: 88–95

    Article  Google Scholar 

  52. Ahmadi M H, Ahmadi M A, Pourfayaz F, Bidi M. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy Conversion and Management, 2016, 110: 260–267

    Article  Google Scholar 

  53. Ahmadi M H, Ahmadi M A, Mehrpooya M, Feidt M, Rosen M A. Optimal design of an Otto cycle based on thermal criteria. Mechanics & Industry, 2016, 17(1): 111

    Article  Google Scholar 

  54. Ahmadi M H, Ahmadi M A, Sadatsakkak S A. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renewable & Sustainable Energy Reviews, 2015, 51: 1055–1070

    Article  Google Scholar 

  55. Ahmadi M H, Ahmadi M A, Pourfayaz F. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. European Physical Journal Plus, 2015, 130(9): 190–203

    Article  Google Scholar 

  56. Sadatsakkak S A, Ahmadi M H, Bayat R, Pourkiaei S M, Feidt M. Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 2015, 93: 31–39

    Article  Google Scholar 

  57. Sadatsakkak S A, Ahmadi M H, Ahmadi M A. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Conversion and Management, 2015, 94: 124–129

    Article  Google Scholar 

  58. Ahmadi M H, Ahmadi M A, Shafaei A, Ashouri M, Toghyani S. Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II. International Journal of Low-Carbon Technologies, 2016, 11: 317–324

    Article  Google Scholar 

  59. Ahmadi M H, Ahmadi M A, Feidt M. Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration. Mechanics & Industry, 2015, 16(2): 207

    Article  Google Scholar 

  60. Abu-Nada E, Al-Hinti I, Al-Sarkhi A, Akash B. Thermodynamic modeling of a spark-ignition engine: effect of temperature dependent specific heats. International Communications in Heat and Mass Transfer, 2006, 33(10): 1264–1272

    Article  Google Scholar 

  61. Li J, Chen L, Sun F. Optimal ecological performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law. Termotehnica Thermal Engineering, 2009, 13(2): 61–68

    Google Scholar 

  62. Chen L, Zhou J, Sun F, Wu C. Ecological optimization for generalized irreversible Carnot engines. Applied Energy, 2004, 77(3): 327–338

    Article  Google Scholar 

  63. Xia D, Chen L, Sun F. Universal ecological performance for endoreversible heat engine cycles. International Journal of Ambient Energy, 2006, 27(1): 15–20

    Article  Google Scholar 

  64. Özel G, Açıkkalp E, Yamık H. Methods used for evaluating irreversible Brayton cycle and comparing them. International Journal of Sustainable Aviation, 2015, 1(3): 288–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M.H., Ahmadi, MA., Aboukazempour, E. et al. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance. Front. Energy 13, 399–410 (2019). https://doi.org/10.1007/s11708-017-0445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0445-y

Keywords

Navigation