Skip to main content
Log in

POCl3 diffusion for industrial Si solar cell emitter formation

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

POCl3 diffusion is currently the de facto standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical performance: deposition gas flow ratio, drive-in temperature and duration, drive-in O2 flow rate, and thermal oxidation temperature. By showing their influence on the emitter doping profile and recombination activity, we provide an overall strategy for improving industrial POCl3 tube diffused emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Photovoltaic. (ITRPV.net) Results 2015 Version 2. 2015, http://www.itrpv.net/Reports/Downloads/

  2. Lossen J, Lauer K, Mittelstädt L, Dauwe S, Beneking C. Making use of silicon wafers with low lifetimes by adequate POCl3 diffusion. In: The 20th European Photovolatic Solar Energy Conference. Barcelona, Spain, 2005

    Google Scholar 

  3. Manshanden P, Geerligs L J. Improved phosphorous gettering of multicrystalline silicon. Solar Energy Materials and Solar Cells, 2006, 90(7–8): 998–1012

    Article  Google Scholar 

  4. Härkönen J, Lempinen V P, Juvonen T, Kylmäluoma J. Recovery of minority carrier lifetime in low-cost multicrystalline silicon. Solar Energy Materials and Solar Cells, 2002, 73(2): 125–130

    Article  Google Scholar 

  5. Joonwichien S, Takahashi I, Matsushima S, Usami N. Enhanced phosphorus gettering of impurities in multicrystalline silicon at low temperature. Energy Procedia, 2014, 55: 203–210

    Article  Google Scholar 

  6. Vacek V, Žácek S, Horsák I. Phosphorus and boron diffusion gettering of iron in monocrystalline silicon. Journal of Applied Physics, 2011, 109(109): 093505

    Google Scholar 

  7. Bentzen A, Holt A, Kopecek R, Stokkan G, Christensen J S. Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing. Journal of Applied Physics, 2006, 99(9): 093509

    Article  Google Scholar 

  8. Cerofolini G F. Polignano M L, Nava F, Ottaviani G. On the mechanism responsible for phosphorus inactivation in heavily doped silicon. Thin Solid Films, 1982, 97(4): 363–367

    Article  Google Scholar 

  9. Solmi S. Parisini A, Angelucci R, Armigliato A, Nobili D. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B, 1996, 53(12): 7836–7841

    Article  Google Scholar 

  10. Dastgheib-Shirazi A, Steyer M, Micard G, Wagner H, Altermatt P P. Relationships between diffusion parameters and phosphorus precipitation during the POCl3 diffusion process. Energy Procedia, 2013, 38(0): 254–262

    Article  Google Scholar 

  11. Ostoja P, Guerri S, Negrini P, Solmi S. The effects of phosphorus precipitation on the open-circuit voltage in N+/P silicon solar cells. Solar Cells, 1984, 11(1): 1–12

    Article  Google Scholar 

  12. Tsai J C C. Shallow phosphorus diffusion profiles in silicon. Proceedings of the IEEE, 1969, 57(9): 1499–1506

    Article  Google Scholar 

  13. Cousins P J, Cotter J E. The influence of diffusion-induced dislocations on high efficiency silicon solar cells. IEEE Transactions on Electron Devices, 2006, 53(3): 457–464

    Article  Google Scholar 

  14. Kimmerle A, Wolf A, Belledin U, Biro D. Modelling carrier recombination in highly phosphorus-doped industrial emitters. Energy Procedia, 2011, 8: 275–281

    Article  Google Scholar 

  15. Wolf A, Kimmerle A, Werner S, Maier S, Belledin U, Meier S, Biro D. Status and perspective of emitter formation by POCl3-diffusion. 2015, https://www.ise.fraunhofer.de/de/veroeffentlichungen/konferenzbeitraege/ konferenzbeitraege-2015/31st-eupvsec-hamburg-germany/ wolf_2co.4.1.pdf

    Google Scholar 

  16. Bazer-Bachi B, Fourmond E, Papet P, Bounaas L, Nichiporuk O. Higher emitter quality by reducing inactive phosphorus. Solar Energy Materials and Solar Cells, 2012, 105(10): 137–141

    Article  Google Scholar 

  17. Altermatt P P, Schumacher J O, Cuevas A, Kerr M J, Glunz S W. Numerical modeling of highly doped Si: P emitters based on Fermi–dirac statistics and self-consistent material parameters. Journal of Applied Physics, 2002, 92(6): 3187–3197

    Article  Google Scholar 

  18. Tannenbaum E. Detailed analysis of thin phosphorus-diffused layers in p-type silicon. Solid-State Electronics, 1961, 2(2–3): 123–132

    Article  Google Scholar 

  19. Morris B L, Katz L E. Reduction of excess phosphorus and elimination of defects in phosphorus emitter diffusions. Journal of the Electrochemical Society, 1978, 125(5): 762–765

    Article  Google Scholar 

  20. Nobili D. Precipitation as the phenomenon responsible for the electrically inactive phosphorus in silicon. Journal of Applied Physics, 1982, 53(3): 1484–1491

    Article  Google Scholar 

  21. Komatsu Y, Vlooswijk A H G, Stassen A F, Venema P, Meyer C. Sophistication of doping profile manipulation-emitter performance improvement without additional process step. The 25th European Photovoltaic Solar Energy Conference and Exhibition-5th World Conference on Photovoltaic Energy Conversion. Valenia, Spain, 2010, 6: 10

    Google Scholar 

  22. Burrows M Z, Meisel A, Scardera G, Lemmi F. Front metal and diffusion optimization for selective emitter. In: 38th IEEE Photovoltaic Specialists Conference (PVSC). 2012: 002138–002141

    Google Scholar 

  23. Zhao J, Wang A, Green M A. Emitter design for high-efficiency silicon solar cells. Part I: Terrestrial cells. Progress in Photovoltaics: Research and Applications, 1993, 1(3): 193–202

    Article  Google Scholar 

  24. Cuevas A, Balbuena M. Thick-emitter silicon solar cells. In: Photovoltaic Specialists Conference. 1988, 1: 429–434

    Article  Google Scholar 

  25. Kerr M J. Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells. Dissertation for the Doctoral Degree. Canberra: Australian National University, 2002

    Google Scholar 

  26. Altermatt P P, Schenk A, Heiser G. A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si: P. Journal of Applied Physics, 2006, 100(11): 113714

    Google Scholar 

  27. Cuevas A, Kerr M J, Schmidt J. Passivation of crystalline silicon using silicon nitride. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003, 1: 913–918

    Google Scholar 

  28. Cuevas A, Basore P A, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics, 1996, 80(6): 3370–3375

    Article  Google Scholar 

  29. Kerr MJ, Schmidt J, Cuevas A, Bultman J H. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics, 2001, 89(7): 3821–3826

    Article  Google Scholar 

  30. Bock R, Altermatt P P, Schmidt J. Accurate extraction of doping profiles from electrochemical capacitance voltage measurements. In: European Photovoltaic Solar Energy Conference. Valencia, Spain. 2008: 1(5)

  31. Sinton R A, Cuevas A. A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European Photovoltaic Solar Energy Conference. 2000, 1152

    Google Scholar 

  32. Kane D E, Swanson R M. Measurement of the emitter saturation current by a contactless photoconductivity decay method. In: IEEE Photovoltaic Specialists Conference. 1985, 18: 578–583

    Google Scholar 

  33. Duttagupta S, Ma F, Hoex B, Mueller T, Aberle A G. Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling. Energy Procedia, 2012, 15(17): 78–83

    Article  Google Scholar 

  34. PVLIGHTHOUSE. https://www2.pvlighthouse.com.au/calculators/EDNA%202/EDNA%202.aspx

  35. Abbott M, Scardera G, Mcintosh K R, Meisel A. Simulation of emitter doping profiles formed by industrial POCl3 processes. In: The 39th Photovoltaic Specialists Conference (PVSC). 2013: 1383–1388

    Google Scholar 

  36. Abbott M D. An examination of three common assumptions used to simulate recombination in heavily doped silicon. In: Proceedings of the 28th EU PVSEC. Paris, France. 2013: 1672–1679

    Google Scholar 

  37. McIntosh K R, Johnson L P. Recombination at textured silicon surfaces passivated with silicon dioxide. Journal of Applied Physics, 2009, 105(12): 124520

    Article  Google Scholar 

  38. Wagner H, Dastgheib-Shirazi A, Chen R, Dunham S T, Kessler M. Improving the predictive power of modeling the emitter diffusion by fully including the phosphsilicate glass (PSG) layer. In: Photovoltaic Specialists Conference (PVSC). 2011: 002957–002962

    Google Scholar 

  39. Chen R, Wagner H, Dastgheib-Shirazi A, Kessler M. Understanding coupled oxide growth and phosphorus diffusion in POCl3 deposition for control of phosphorus emitter diffusion. In: Photovoltaic Specialists Conference (PVSC). 2012: 000213–000216

    Google Scholar 

  40. Micard G, Dastgheib-Shirazi A, Altermatt P P, Solar T. Advances in the understanding of phosphorus silicate glass (PSG) formation for accurate process simulation of phosphorus diffusion. In: The 27th European Photovoltaic Solar Energy Conference. Frankfurt, Germany. 2012

    Google Scholar 

  41. Hu S M, Fahey P, Dutton R W. On models of phosphorus diffusion in silicon. Journal of Applied Physics, 1983, 54(12): 6912–6922

    Article  Google Scholar 

  42. Rothhardt P, Keding R, Belledin U, Wolf A, Biro D. Control of phosphorus doping profiles for co-diffusion processes. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. 2012

    Google Scholar 

  43. Safiei A, Windgassen H, Wolter K, Kurz H. Emitter profile tailoring to contact homogeneous high sheet resistance emitter. Energy Procedia, 2012, 27: 432–437

    Article  Google Scholar 

  44. Rothhardt P, Demberger C, Wolf A, Biro D. Co-diffusion from APCVD BSG and POCl3 for industrial n-type solar cells. Energy Procedia, 2013, 38: 305–311

    Article  Google Scholar 

  45. Lee H J, Kang M G, Choi S J, Kang G H, Myoung J M. Characteristics of silicon solar cell emitter with a reduced diffused phosphorus inactive layer. Current Applied Physics, 2013, 13(8): 1718–1722

    Article  Google Scholar 

  46. Duffy M C, Barson F, Fairfield J M, Schwuttke G H. Effects of high phosphorus concentration on diffusion into silicon. Journal of the Electrochemical Society, 1968, 115(1): 84–88

    Article  Google Scholar 

  47. Steyer M, Dastgheib-Shirazi A, Hahn G, Terheiden B. New method for determination of electrically inactive phosphorus in n-type emitters. Energy Procedia, 2015, 77: 316–320

    Article  Google Scholar 

  48. Kooi E. Formation and composition of surface layers and solubility limits of phosphorus during diffusion in silicon. Journal of the Electrochemical Society, 1964, 111(12): 1383–1387

    Article  Google Scholar 

  49. Kumar D, Saravanan S, Suratkar P. Effect of oxygen ambient during phosphorous diffusion on silicon solar cell. Journal of Renewable and Sustainable Energy, 2012, 4(3): 033105

    Article  Google Scholar 

  50. de Rose R, Zanuccoli M, Magnone P, Frei M, Sangiorgi E. Understanding the impact of the doping profiles on selective emitter solar cell by two-dimensional numerical simulation. IEEE Journal of Photovoltaics, 2013, 3(1): 159–167

    Article  Google Scholar 

  51. Carroll A F. Screen printed metal contacts to Si solar cells-formation and synergistic improvements. In: The 39th Photovoltaic Specialists Conference (PVSC). 2013: 3435–3440

    Google Scholar 

  52. Biro D, Mack S, Wolf A, Lemke A, Belledin U. Thermal oxidation as a key technology for high efficiency screen printed industrial silicon solar cells. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference. PA, USA, 2009: 1594–1599

    Google Scholar 

  53. Schultz O, Mette A, Hermle M, Glunz S W. Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 317–324

    Article  Google Scholar 

  54. Schultz O, Hofmann M, Glunz S W, Willeke G P. Silicon oxide/ silicon nitride stack system for 20% efficient silicon solar cells. In: The 31st IEEE Photovoltaic Specialists Conference. 2005: 872–876

    Google Scholar 

  55. Ortega P, Vetter M, Bermejo S, Alcubilla R. Very low recombination phosphorus emitters for high efficiency crystalline silicon solar cells. Semiconductor Science and Technology, 2008, 23(12): 125032

    Article  Google Scholar 

  56. Janssens T, Posthuma N E, van Kerschaver E, Baert K. Advanced phosphorous emitters for high efficiency Si solar cells. In: The 34th IEEE Photovoltaic Specialists Conference (PVSC). 2009: 000878–000882

    Chapter  Google Scholar 

  57. Blakers A W, Wang A H, Milne A M, Zhao J H, Green Martin A. 22.8% efficient silicon solar cell. Applied Physics Letters, 1989, 55(13): 1363–1365

    Article  Google Scholar 

  58. Masetti G, Solmi S, Soncini G. On phosphorus diffusion in silicon under oxidizing atmospheres. Solid-State Electronics, 1973, 16(12): 1419–1421

    Article  Google Scholar 

  59. Florakis A, Janssens T, Posthuma N, Delmotte J, Douhard B. Simulation of the phosphorus profiles in a c-Si solar cell fabricated using POCl3 diffusion or ion implantation and annealing. Energy Procedia, 2013, 38: 263–269

    Article  Google Scholar 

  60. Hallam B, Wenham S, Chong C M, Sugianto A, Mai L. Record large-area p-type CZ production cell efficiency of 19.3% based on LDSE technology. IEEE Journal of Photovoltaics, 2011, 1(1): 43–48

    Article  Google Scholar 

  61. Lee E, Lee H, Choi J, Oh D, Shim J. Improved LDSE processing for the avoidance of overplating yielding 19.2% efficiency on commercial grade crystalline Si solar cell. Solar Energy Materials and Solar Cells, 2011, 95(12): 3592–3595

    Article  Google Scholar 

  62. Cooper I B, Tate K, Carroll A F, Mikeska K R, Reedy R C. Low resistance screen-printed Ag contacts to POCl3 emitters with low saturation current density for high efficiency Si solar cells. In: Photovoltaic Specialists Conference (PVSC). 2012: 003359–003364

    Google Scholar 

  63. Kerr M J, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics, 2002, 91(4): 2473–2480

    Article  Google Scholar 

  64. Richter A, Glunz S W, Werner F, Schmidt J, Cuevas A. Improved quantitative description of auger recombination in crystalline silicon. Physical Review B, 2012, 86(16): 165–202

    Article  Google Scholar 

  65. Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics, 1998, 84(7): 3684–3695

    Article  Google Scholar 

  66. Banghart E K, Gray J L. Extension of the open-circuit voltage decay technique to include plasma-induced bandgap narrowing. IEEE Transactions on Electron Devices, 1992, 39(5): 1108–1114

    Article  Google Scholar 

  67. Altermatt P P, Schenk A, Geelhaar F, Heiser G. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics, 2003, 93(3): 1598–1604

    Article  Google Scholar 

  68. Mäckel H, Varner K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Progress in Photovoltaics: Research and Applications, 2013, 21(5): 850–866

    Google Scholar 

  69. Fahey P M, Griffin P, Plummer J. Point defects and dopant diffusion in silicon. Reviews of Modern Physics, 1989, 61(2): 289–384

    Article  Google Scholar 

  70. Dastgheib-Shirazi A, Steyer M, Micard G, Wagner H. Effects of process conditions for the n+-emitter formation in crystalline silicon. In: Photovoltaic Specialists Conference (PVSC). 2012: 001584–001589

    Google Scholar 

  71. Tsai J C C. Point defect generation during phosphorus diffusion in silicon I. Journal of the Electrochemical Society, 1987, 134(6): 1508–1518

    Article  Google Scholar 

  72. Min B, Wagner H, Dastgheib-Shirazi A, Kimmerle A, Kurz H. Heavily doped Si:P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation. physica status solidi (RRL)–Rapid Research Letters, 2014, 8(8): 680–684

    Article  Google Scholar 

  73. Min B, Wagner H, Altermatt P P, Dastgheib-Shirazi A. Limitation of industrial phosphorus-diffused emitters by SRH recombination. Energy Procedia, 2014, 55: 115–120

    Article  Google Scholar 

  74. Schmidt P F, Stickler R. Silicon phosphide precipitates in diffused silicon. Journal of the Electrochemical Society, 1964, 111(10): 1188–1189

    Article  Google Scholar 

  75. Komatsu Y, Vlooswijk A H G, Stassen A F, Venema P, Meyer C. Sophistication of doping profile manipulation-emitter performance improvement without additional process step. In: The 25th European Photovoltaic Solar Energy Conference and Exhibition-5th World Conference on Photovoltaic Energy Conversion. Valencia, Spain, 2010, 6: 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Kim, K., Hallam, B. et al. POCl3 diffusion for industrial Si solar cell emitter formation. Front. Energy 11, 42–51 (2017). https://doi.org/10.1007/s11708-016-0433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-016-0433-7

Keywords

Navigation