Skip to main content

Advertisement

Log in

Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The thermal behavior of Nannochloropsis oculata combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that Nannochloropsis oculata combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan S A, Rashmi, Hussain MZ, Prasad S, Banerjee U C. Prospects of biodiesel production from microalgae in India. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2361–2372

    Article  Google Scholar 

  2. Tabatabaei M, Tohidfar M, Jouzani G S, Safarnejad M, Pazouki M. Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable & Sustainable Energy Reviews, 2011, 15(4): 1918–1927

    Article  Google Scholar 

  3. De La Torre Ugarte D, Walsh M E, Shapouri, H, Slinsky, S P. The economic impacts of bioenergy crop production on US agriculture. Oak Ridge National Laboratory, 2000, 292(5519):41. https://www.michigan.gov/documents/eco-impact_89541_7.pdf

    Google Scholar 

  4. Banerjee A, Sharma R, Chisti Y, Banerjee U C. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 2002, 22(3): 245–279

    Article  Google Scholar 

  5. Sawayama S, Minowa T, Yokoyama S. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 1999, 17(1): 33–39

    Article  Google Scholar 

  6. Ross A B, Biller P, Kubacki M L, Li H, Lea-Langton A, Jones J M. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89(9): 2234–2243

    Article  Google Scholar 

  7. Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294–306

    Article  Google Scholar 

  8. Metting F B Jr. Biodiversity and application of microalgae. Journal of Industrial Microbiology & Biotechnology, 1996, 17(5–6): 477–489

    Article  Google Scholar 

  9. Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management, 2010, 51(12): 2738–2749

    Article  Google Scholar 

  10. Mirón A S, García M C C, Gómez A C, Camacho F G, Grima E M, Chisti Y. Shear stress tolerance and biochemical characterization of phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 2003, 16(3): 287–297

    Article  Google Scholar 

  11. Poncet J M, Véron B. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotechnology Letters, 2003, 25(23): 2017–2022

    Article  Google Scholar 

  12. Chiu S Y, Kao C Y, Tsai M T, Ong S C, Chen C H, Lin C S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 2009, 100(2): 833–838

    Article  Google Scholar 

  13. Suryanto H., Sukarni, Yanuhar U. Design Development of Effective Photobioreactor for Cultivation of Marine Microalgae as a Source of Renewable Energy (in Indonesian). The Research Report of National Strategic Grant, State University of Malang, Malang (2009)

    Google Scholar 

  14. Volkman J K, Brown M R, Dunstan G A, Jeffrey S. The biochemical composition of marine microalgae from the class eustigmatophyceae. Journal of Phycology, 1993, 29(1): 69–78

    Article  Google Scholar 

  15. Lubián L M, Montero O, Moreno-Garrido I, Huertas I E, Sobrino C, González-del Valle M, Parés G. Nannochloropsis (eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 2000, 12(3–5): 249–255

    Article  Google Scholar 

  16. Lee M Y, Min B S, Chang C S, Jin E. Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Marine Biotechnology (New York, N.Y.), 2006, 8(3): 238–245

    Article  Google Scholar 

  17. Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels R H. Development of in vivo sponge cultures: particle feeding by the tropical sponge pseudosuberites aff. andrewsi. Marine Biotechnology (New York, N.Y.), 2001, 3(6): 544–554

    Article  Google Scholar 

  18. Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A. Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Marine Biotechnology (New York, N.Y.), 2009, 11(5): 585–595

    Article  Google Scholar 

  19. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100–112

    Article  Google Scholar 

  20. Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493–507

    Article  Google Scholar 

  21. Sanchez A, González A, Maceiras R, Cancela Á, Urrejola S. Raceway pond design for microalgae culture for biodiesel. Chemical Engineering Transactions, 2011, 25: 845–850

    Google Scholar 

  22. Park J B K, Craggs R J, Shilton A N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 2011, 102(1): 35–42

    Article  Google Scholar 

  23. Sierra E, Acién F G, Fernández JM, García J L, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 2008, 138(1–3): 136–147

    Article  Google Scholar 

  24. Sato T, Yamada D, Hirabayashi S. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Conversion and Management, 2010, 51(6): 1196–1201

    Article  Google Scholar 

  25. Hsieh C H, Wu W T. A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 2009, 46(3): 300–305

    Article  Google Scholar 

  26. Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A. An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 2010, 101(17): 6768–6777

    Article  Google Scholar 

  27. Das P, Obbard J P. Incremental energy supply for microalgae culture in a photobioreactor. Bioresource Technology, 2011, 102(3): 2973–2978

    Article  Google Scholar 

  28. Wahlen B D, Willis R M, Seefeldt L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 2011, 102(3): 2724–2730

    Article  Google Scholar 

  29. Gong Y, Jiang M. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 2011, 33(7): 1269–1284

    Article  Google Scholar 

  30. John R P, Anisha G S, Nampoothiri K M, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 2011, 102(1): 186–193

    Article  Google Scholar 

  31. Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 2011, 46(1): 304–309

    Article  Google Scholar 

  32. Harun R, Jason W S Y, Cherrington T, Danquah M K. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 2011, 88(10): 3464–3467

    Article  Google Scholar 

  33. Harun R, Danquah M K, Forde G M. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(2): 199–203

    Google Scholar 

  34. Mussgnug J H, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 2010, 150(1): 51–56

    Article  Google Scholar 

  35. Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Conversion and Management, 2010, 51(3): 606–611

    Article  Google Scholar 

  36. Razon L F, Tan R R. Net energy analysis of the production of biodiesel and biogas from the microalgae: haematococcus pluvialis and nannochloropsis. Applied Energy, 2011, 88(10): 3507–3514

    Article  Google Scholar 

  37. Collet P, Hélias A, Lardon L, Ras M, Goy R A, Steyer J P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 2011, 102(1): 207–214

    Article  Google Scholar 

  38. Sukarni, Sudjito, Hamidi N, Yanuhar U, Wardana I N G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. International Journal of Energy and Environmental Engineering, 2014, 5(4): 279–290

    Article  Google Scholar 

  39. Beamish B B. Proximate analysis of New Zealand and Australian coals by thermogravimetry. New Zealand Journal of Geology and Geophysics, 1994, 37(4): 387–392

    Article  Google Scholar 

  40. Mayoral M C, Izquierdo M T, Andres J M, Rubio B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta, 2001, 370(1–2): 91–97

    Article  Google Scholar 

  41. Nhuchhen D R, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel, 2012, 99: 55–63

    Article  Google Scholar 

  42. Gašparovič L, Koreňová Z, Jelemenský Ľ. Kinetic study of wood chips decomposition by TGA. Chemical Papers, 2010, 64(2): 174–181

    Google Scholar 

  43. Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry, 2011, 105(1): 145–150

    Article  Google Scholar 

  44. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 2012, 97: 491–497

    Article  Google Scholar 

  45. Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 2008, 472(1–2): 55–63

    Article  Google Scholar 

  46. Sonibare O O, Ehinola O A, Egashira R, KeanGiap L. An investigation into the thermal decomposition of Nigerian coal. Journal of Applied Sciences, 2005, 5(1): 104–107

    Article  Google Scholar 

  47. Chen C, Ma X, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 2011, 88(9): 3189–3196

    Article  Google Scholar 

  48. Tang Y, Ma X, Lai Z. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 2011, 102(2): 1879–1885

    Article  Google Scholar 

  49. Vamvuka D, Sfakiotakis S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochimica Acta, 2011, 526(1–2): 192–199

    Article  Google Scholar 

  50. Wang Q, Zhao W, Liu H, Jia C, Xu H. Reactivity and kinetic analysis of biomass during combustion. Energy Procedia, 2012, 17: 869–875

    Article  Google Scholar 

  51. Maloney D, Sampath R, Zondlo J. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating. Combustion and Flame, 1999, 116(1–2): 94–104

    Article  Google Scholar 

  52. Kissinger H. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1956, 1957(29): 1702–1706

    Google Scholar 

  53. Jiang G, Nowakowski D J, Bridgwater A V. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010, 498(1–2): 61–66

    Article  Google Scholar 

  54. Hu S, Jess A, Xu M. Kinetic study of chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel, 2007, 86(17–18): 2778–2788

    Article  Google Scholar 

  55. Ounas A, Aboulkas A, El Harfi K, Bacaoui A, Yaacoubi A. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2011, 102(24): 11234–11238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukarni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukarni, Sudjito, Hamidi, N. et al. Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere. Front. Energy 9, 125–133 (2015). https://doi.org/10.1007/s11708-015-0346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-015-0346-x

Keywords

Navigation