Skip to main content
Log in

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referencees

  1. National Energy Technology Laboratory. Fuel Cell Handbook. 7th ed. Technical Report DOE/NETL 2004/1206, Morgantown, WV (2002); available at: http://www.brennstoffzellen.rwth-aachen.de/Links/FCHandbook7.pdf

  2. Bavarsad P G. Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy, 2007, 32(17): 4591–4599

    Article  Google Scholar 

  3. Aguiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources, 2004, 138(1–2): 120–136

    Article  Google Scholar 

  4. Colpan C O, Dincer I, Hamdullahpur F. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. International Journal of Hydrogen Energy, 2007, 32(7): 787–795

    Article  Google Scholar 

  5. Boder M, Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources, 2006, 155(1): 13–22

    Article  Google Scholar 

  6. Haseli Y, Dincer I, Naterer G F. Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. International Journal of Hydrogen Energy, 2008, 33(20): 5811–5822

    Article  Google Scholar 

  7. Sangtongkitcharoen W, Assabumrungrat S, Pavarajarn V, Laosiripojana N, Praserthdam P. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane. Journal of Power Sources, 2005, 142(1): 75–80

    Article  Google Scholar 

  8. Wang Q S, Li L J, Wang C. Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane. Journal of Power Sources, 2009, 186(2): 399–407

    Article  Google Scholar 

  9. Finnerty C M, Ormerod R M. Internal reforming over nickel/zirconia anodes in SOFCS oparating on methane: influence of anode formulation, pre-treatment and operating conditions. Journal of Power Sources, 2000, 86(1–2): 390–394

    Article  Google Scholar 

  10. Peters R, Dahl R, Klüttgen U, Palm C, Stolten D. Internal reforming of methane in solid oxide fuel cell systems. Journal of Power Sources, 2002, 106(1–2): 238–244

    Article  Google Scholar 

  11. Seo Y S, Shirley A, Kolaczkowski S T. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. Journal of Power Sources, 2002, 108(1–2): 213–225

    Article  Google Scholar 

  12. Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal, 2001, 82(1–3): 311–328

    Article  Google Scholar 

  13. Clarke S H, Dicks A L, Pointon K, Smith T A, Swann A. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells. Catalysis Today, 1997, 38(4): 411–423

    Article  Google Scholar 

  14. Zhu H Y, Kee R J. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 2003, 117(1–2): 61–74

    Article  Google Scholar 

  15. Wang Y Z, Yoshiba F, Watanabe T, Weng S L. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC. Journal of Power Sources, 2007, 170(1): 101–110

    Article  Google Scholar 

  16. Wang Y Z, Yoshiba F, Kawase M, Watanabe T. Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC. International Journal of Hydrogen Energy, 2009, 34(9): 3885–3893

    Article  Google Scholar 

  17. Wang Y Z, Li Y X, Weng S L, Wang Y H. Numerical simulation of counter-flow spray saturator for humid air turbine cycle. Energy, 2007, 32(5): 852–860

    Article  Google Scholar 

  18. Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. Journal of Power Sources, 2002, 110(1): 186–200

    Article  Google Scholar 

  19. Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources, 2001, 93(1–2): 130–140

    Article  Google Scholar 

  20. Hwang J J, Chen C K, Lai D Y. Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC. Journal of Power Sources, 2005, 140(2): 235–242

    Article  Google Scholar 

  21. Xu J, Froment G F. Methane steam reforming machination and water gas shift-I. Intrinsic kinetics. American Institute of Chemical Engineers, 1989, 35(1): 88–96

    Google Scholar 

  22. Costamagna P, Selimovic A, Del M B, Agnew G. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chemical Engineering Journal, 2004, 102(1): 61–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Weng, S. & Weng, Y. Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming. Front. Energy 5, 195–206 (2011). https://doi.org/10.1007/s11708-011-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-011-0148-8

Keywords

Navigation