Skip to main content
Log in

Radiative properties of materials with surface scattering or volume scattering: A review

  • Review Article
  • Published:
Frontiers of Energy and Power Engineering in China Aims and scope Submit manuscript

Abstract

Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineering and many other applications. These properties are often needed for calculating heat transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) is reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modest M F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003

    Google Scholar 

  2. Zhang Z M. Surface temperature measurement using optical techniques. In: Tien C L, ed. Annual Review of Heat Transfer, New York: Begell House, 2000, 51–411

    Google Scholar 

  3. Timans P J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by Roozeboom F), Dordrecht, Netherlands: Academic Publishers, 1996, 35–102

    Google Scholar 

  4. Wen C D, Mudawar I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2004, 47(17, 18): 3591–3605

    Article  Google Scholar 

  5. Beckmann P, Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces. Norwood, MA: Artech House, 1987

    Google Scholar 

  6. Saillard M, Sentenac A. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves Random Media, 2001, 11 (3): R103–R137

    Article  MathSciNet  Google Scholar 

  7. Warnick K F, Chew W C. Numerical simulation methods for rough surface scattering. Waves Random Media, 2001, 11(1): R1–R30

    Article  MathSciNet  MATH  Google Scholar 

  8. Macaskill C. Geometric optics and enhanced backscatter from very rough surfaces. Journal of the Optical Society of America A, 1991, 8(1): 88–96

    Article  Google Scholar 

  9. Tang K, Buckius R O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer, 2001, 44(21): 4059–4073

    Article  MATH  Google Scholar 

  10. Zhou Y H, Shen Y J, Zhang Z M, et al. A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces. International Journal of Heat and Mass Transfer, 2002, 45(9): 1945–1949

    Article  MATH  Google Scholar 

  11. Prokhorov A V, Hanssen L M. Algorithmic model of microfacet BRDF for Monte Carlo calculation of optical radiation transfer. SPIE, 2003, 5192: 141–157

    Article  Google Scholar 

  12. Zhu Q Z, Zhang Z M. Anisotropic slope distribution and bidirectional reflectance of a rough silicon surface. Journal of Heat Transfer, 2004, 126(6): 985–993

    Article  MathSciNet  Google Scholar 

  13. Lee H J, Lee B J, Zhang Z M. Modeling the radiative properties of semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1–3): 185–194

    Article  Google Scholar 

  14. Guérin C A. Scattering on rough surfaces with alpha-stable non-Gaussian height distributions. Waves Random Media, 2002, 12(3): 293–306

    Article  MATH  Google Scholar 

  15. Viskanta R, Mengüç M P. Radiative transfer in dispersed media. Applied Mechanics Reviews, 1989, 42(9): 241–259

    Google Scholar 

  16. Tong T W, Swathi P S. Examination of the radiative properties of coated silica fibers. Journal of Thermal Insulation, 1987, 11: 7–31

    Google Scholar 

  17. Baillis D, Sacadura J F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy & Radiative Transfer, 2000, 67(5): 327–363

    Article  Google Scholar 

  18. Viskanta R, Mengüç M P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science, 1987, 13(2): 97–160

    Article  Google Scholar 

  19. Fricke J, Emmerling A. Aerogels. Journal of the American Ceramic Society, 1992, 75(8): 2027–2036

    Article  Google Scholar 

  20. Wen C D, Mudawar I. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2005, 48(7): 1316–1329

    Article  Google Scholar 

  21. Schietinger C. Wafer temperature measurement in RTP. In: Roozeboom F, ed. Advances in Rapid Thermal and Integrated Processing, Dordrecht, Netherlands: Academic Publishers, 1996, 103–123

    Google Scholar 

  22. Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002

    Google Scholar 

  23. Zhang Z M. Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007

    Google Scholar 

  24. Priest R G, Germer T A. Polarimetric BRDF in the microfacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169–181

    Google Scholar 

  25. Feng W W, Wei Q N, Wang S M, et al. Numerical simulation of polarized Bidirectional Reflectance Distribution Function (BRDF) based on micro-facet model. SPIE, 2008, 6622: 66220A

    Google Scholar 

  26. Ogilvy J A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991

    MATH  Google Scholar 

  27. Shen Y J, Zhang Z M, Tsai B K, et al. Bidirectional reflectance distribution function of rough silicon wafers. International Journal of Thermophysics, 2001, 22(4): 1311–1326

    Article  Google Scholar 

  28. Zhang Z M, Fu C J, Zhu Q Z. Optical and thermal radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179–296

    Google Scholar 

  29. Stover J. Optical Scattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995

    Google Scholar 

  30. Zhu Q Z, Zhang ZM. Correlation of angle-resolved light scattering with the microfacet orientation of rough silicon surfaces. Optical Engineering, 2005, 44(7): 073601

    Article  MathSciNet  Google Scholar 

  31. Lee H J, Chen Y B, Zhang Z M. Directional radiative properties of anisotropic rough silicon and gold surfaces. International Journal of Heat and Mass Transfer, 2006, 49(23,24): 4482–4495

    Article  MathSciNet  MATH  Google Scholar 

  32. Resnik D, Vrtacnik D, Amon S. Morphological study of {311} crystal planes anisotropically etched in (100) silicon: role of etchants and etching parameters. Journal of Micromechanics and Microengineering, 2000, 10(3): 430–439

    Article  Google Scholar 

  33. O’Donnell K A, Mendez E R. Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A, 1987, 4(7): 1194–1205

    Article  Google Scholar 

  34. Nieto-Vesperinas M, Soto-Crespo J M. Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters, 1987, 12(12): 979–981

    Article  Google Scholar 

  35. Maradudin A A, Michel T, McGurn A R, et al. Enhanced backscattering of light from a random grating. Annals of Physics, 1990, 203(2): 255–307

    Article  Google Scholar 

  36. Sanchez-Gil J A, Nieto-Vesperinas M. Light scattering from random rough dielectric surfaces. Journal of the Optical Society of America A, 1991, 8(8): 1270–1286

    Article  Google Scholar 

  37. Lu J Q, Maradudin A A, Michel T. Enhanced backscattering from a rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B, 1991, 8(2): 311–318

    Article  Google Scholar 

  38. Gu Z H, Lu J Q. Maradudin A A. Enhanced backscattering from a rough dielectric film on a glass substrate. Journal of the Optical Society of America A, 1993, 10(8): 1753–1764

    Article  Google Scholar 

  39. Fu K, Hsu P F. Modeling the radiative properties microscale random roughness surfaces. Journal of Heat Transfer, 2007, 129 (1): 71–78

    Article  Google Scholar 

  40. Lettieri T R, Marx E, Song J F, et al. Light scattering from glossy coatings on paper. Applied Optics, 1991, 30(30): 4439–4447

    Google Scholar 

  41. Tang K, Kawka P A, Buckius R O. Geometric optics applied to rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 169–176

    Article  Google Scholar 

  42. Icart I, Arques D. Simulation of the optical behavior of rough identical multilayer. SPIE, 2000, 4100: 84–95

    Article  Google Scholar 

  43. Elfouhaily T M, Guérin C A. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media, 2004, 14(4): R1–R40

    Article  MATH  Google Scholar 

  44. Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America, 1988, 83(1): 78–92

    Article  Google Scholar 

  45. Soto-Crespo J M, Nieto-Vesperinas M, Friberg A T. Scattering from slightly rough random surfaces-a detailed study on the validity of the small perturbation method. Journal of the Optical Society of America A, 1990, 7(7): 1185–1201

    Article  Google Scholar 

  46. Tang K, Dimenna R A, Buckius R O. Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces. International Journal of Heat and Mass Transfer, 1997, 40(1): 49–59

    Article  MATH  Google Scholar 

  47. Fu K, Hsu P F. New regime map of the geometric optics approximation for scattering from random rough surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 180–188

    Article  Google Scholar 

  48. Zhou Y H, Zhang Z M. Radiative properties of semitransparent silicon wafers with rough surfaces. Journal of Heat Transfer, 2003, 125(3): 462–470

    Article  Google Scholar 

  49. Zhu Q Z, Lee H J, Zhang Z M. The validity of using thin-film optics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer, 2005, 19: 548–555

    Article  Google Scholar 

  50. Lee H J, Zhang Z M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. International Journal of Thermophysics, 2006, 27(3): 820–839

    Article  Google Scholar 

  51. Bruce N C. Scattering of light from surfaces with one-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A, 1997, 14(8): 1850–1858

    Article  Google Scholar 

  52. Lee H J, Zhang Z M. Applicability of phase ray-tracing method for light scattering from rough surfaces. Journal of Thermophysics and Heat Transfer, 2007, 21: 330–336

    Article  Google Scholar 

  53. Barnes P Y, Early E A, Parr A C. Spectral Reflectance, NIST Special Publication 250-48. Washington, DC: U.S. Government Printing Office, 1998

    Google Scholar 

  54. Shen Y J, Zhu Q Z, Zhang Z M. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Review of Scientific Instruments, 2003, 74(11): 4885–4892

    Article  Google Scholar 

  55. Dai J M, Qi C, Sun X G. Comparison and research for several Bidirectional reflectance distribution function (BRDF) measuring. SPIE, 2003, 5280: 655–660

    Article  Google Scholar 

  56. Zhao Z Y, Qi C, Dai J M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters, 2007, 5(3): 168–171

    Google Scholar 

  57. Feng W W, Wei Q N. A scatterometer for measuring the polarized bidirectional reflectance distribution function of painted surfaces in the infrared. Infrared Physics & Technology, 2008, 51: 559–563

    Article  Google Scholar 

  58. Lee H J, Bryson A C, Zhang Z M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918–933

    Article  Google Scholar 

  59. Ghmari F, Sassi I, Sifaoui M S. Directional hemispherical radiative properties of random dielectric rough surfaces. Waves Random Complex, 2005, 15(4): 469–486

    Article  Google Scholar 

  60. Van de Hulst H C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)

    Google Scholar 

  61. Kerker M. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969

    Google Scholar 

  62. Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983

    Google Scholar 

  63. Schuster A. Radiation through foggy atmospheres. The Astrophysical Journal, 1905, 21(1): 1–22

    Article  Google Scholar 

  64. Kubelka P, Munk F. An article on optics of paint layers. Z Tech Phys, 1931, 12(11a): 593–601

    Google Scholar 

  65. Chandrasekhar S. Radiative Transfer. New York: Dover, 1960

    Google Scholar 

  66. Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978 by Academic Press, Vols. 1&2)

    MATH  Google Scholar 

  67. Mishchenko M I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics, 2002, 41 (33): 7114–7134

    Article  Google Scholar 

  68. Tien C L, Drolen B L. Thermal radiation in particulate media with dependent and independent scattering. In: Chawla T C ed. Annual Review of Numerical Fluid Mechanics and Heat Transfer, New York: Hemisphere Publishing Corp, 1987, 1–32

    Google Scholar 

  69. Hapke B. Bidirectional reflectance spectroscopy — I. Theory. Journal of Geophysical Research, 1981, 86(B4): 3039–3054

    Article  Google Scholar 

  70. Kokhanovsky A A, Sokoletsky L G. Reflection of light from semiinfinite absorbing turbid media. Part 2: Plane albedo and reflection function. Color Research and Application, 2006, 31(6): 498–509

    Article  Google Scholar 

  71. Mishchenko M I, Dlugach J M, Yanovitskij E G, et al. Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer, 1999, 63(4): 409–432

    Article  Google Scholar 

  72. Williams M M R. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical, 2007, 40(24): 6407–6425

    Article  MathSciNet  MATH  Google Scholar 

  73. Mueller D W, Crosbie A L. Three-dimensional radiative transfer in an anisotropically scattering, plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 75(6): 661–721

    Article  Google Scholar 

  74. Mudgett P S, Richards L W. Multiple scattering calculations for technology. Applied Optics, 1971, 10(7): 1485–1502

    Article  Google Scholar 

  75. Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 1988, 27(12): 2502–2509

    Google Scholar 

  76. Fivelan W A. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. Journal of Thermophysics and Heat Transfer, 1988, 2(4): 309–316

    Article  Google Scholar 

  77. Evans K E. Two-dimensional radiative transfer in cloudy atmospheres: the spherical harmonic spatial grid method. Journal of the Atmospheric Sciences, 1993, 50(18): 3111–3124

    Article  Google Scholar 

  78. Kisselev V B, Roberti L, Perona G. An application of the finite element method to the solution of the radiative transfer equation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1994, 51(5–6): 545–663

    Google Scholar 

  79. Liu L H. Finite element simulation of radiative heat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 555–557

    Article  Google Scholar 

  80. An W, Ruan L M, Qi H, et al. Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 96(3–4): 409–422

    Article  Google Scholar 

  81. Chai J, Parthasarathy G, Patankar S, et al. A finite-volume radiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer, 1994, 9(3): 410–415

    Article  Google Scholar 

  82. Howell J R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer, 1998, 120(3): 547–560

    Article  Google Scholar 

  83. Gjerstad K I, Stamnes J J, Hamre B, et al. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Applied Optics, 2003, 42(15): 2609–2622

    Article  Google Scholar 

  84. Modest M F. Backward Monte Carlo simulations in radiative heat transfer. Journal of Heat Transfer, 2003, 125(1): 57–62

    Article  Google Scholar 

  85. Lu X, Hsu P F. Reverse Monte Carlo simulations of ultra-short light pulse propagation within three-dimensional nonhomogeneous media. Journal of Thermophysics and Heat Transfer, 2005, 19(3): 353–359

    Article  MathSciNet  Google Scholar 

  86. Cheng Q, Zhou H C. The DRESOR method for a collimated irradiation on an isotropically scattering layer. Journal of Heat Transfer, 2007, 129(5): 634–645

    Article  Google Scholar 

  87. Zhou H C, Chen D L, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 83(3–4): 459–481

    Article  Google Scholar 

  88. Zhao J M, Liu L H. Discontinuous spectral element method for solving radiative heat transfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 107(1): 1–16

    Article  Google Scholar 

  89. Tan H P, Lallemand M. Transient radiative-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions. International Journal of Heat and Mass Transfer, 1989, 32(5): 795–810

    Article  Google Scholar 

  90. Tan H P, Xia X L, Liu L H, et al. Numerical Calculation for Infrared Radiative Characteristics and Transfer - Computational Thermal Radiation. Harbin: Press of the Harbin Institute of Technology, 2006 (in Chinese)

    Google Scholar 

  91. Liu L H, Zhao J M, Tan H P. Finite/Spectral Element Methods for Solving Radiative Transfer Equation. Beijing: Science Press, 2008 (in Chinese)

    Google Scholar 

  92. Mishchenko M I, Hovenier J W, Travis L D, eds. Light Scattering by Nonspherical Particles. San Diego: Academic Press, 2000

    Google Scholar 

  93. Tsang L, Kong J A, Ding K H. Scattering of Electromagnetic Waves-Theories and Applications, New York: Wiley, 2000

    Book  Google Scholar 

  94. Kahnert F M. Numerical method in electromagnetic scattering theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 79–80(7): 775–824

    Article  Google Scholar 

  95. Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain method. 3rd ed. Boston, MA: Artech House, 2005

    Google Scholar 

  96. Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 1994, 11(4): 1491–1499

    Article  Google Scholar 

  97. Wang K Y, Tien C L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer, 1983, 30(3): 213–223

    Article  Google Scholar 

  98. Lee S C. Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer, 1989, 32 (2): 311–319

    Article  MATH  Google Scholar 

  99. Dombrovsky L A. Quartz-fiber thermal insulation: infrared radiative properties and calculation of radiative-conductive heat transfer. Journal of Heat Transfer, 1996, 118(2): 408–414

    Article  Google Scholar 

  100. Lee S C. Radiative transfer through a fibrous medium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 36(3): 253–263

    Article  Google Scholar 

  101. Yamada J, Kurosaki Y. Radiative characteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer, 2000, 43(6): 981–991

    Article  MATH  Google Scholar 

  102. Coquard R, Baillis D. Radiative properties of dense fibrous medium containing fibers in the geometric limit. Journal of Heat Transfer, 2006, 128(10): 1022–1030

    Article  Google Scholar 

  103. Tian W, Huang W, Chiu W K S. Thermal radiative properties of a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer, 2007, 129(6): 763–767

    Article  Google Scholar 

  104. Lee S C. Effective propagation constant of fibrous media containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer, 1992, 114(2): 473–478

    Article  Google Scholar 

  105. Lee S C. Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer, 1994, 8(4): 641–646

    Article  Google Scholar 

  106. Lee S C. Scattering by a dense layer of infinite cylinders at normal incidence. Journal of the Optical Society of America, 2008, 25(5): 1022–1029

    Article  MathSciNet  Google Scholar 

  107. Lee S C. Scattering by a dense finite layer of infinite cylinders at oblique incidence. Journal of the Optical Society of America A, 2008, 25(10): 2489–2498

    Article  MathSciNet  Google Scholar 

  108. Wang K Y, Kumar S, Tien C L. Radiative transfer in thermal insulations of hollow and coated fibers. Journal of Thermophysics and Heat Transfer, 1987, (1): 289–295

  109. Yang L L, He X D, He F. ITO coated quartz fibers for heat radiative applications. Materials Letters, 2008, 62(30): 4539–4541

    Article  Google Scholar 

  110. Yan Changhai, Meng Songhe, Chen Guiqing, et al. Research on nanocomposite material coating on fibrous insulations. Materials Review, 2006, 20(4): 33–135 (in Chinese)

    Google Scholar 

  111. Papini M. Influence of the orientation of polypropylene fibers on their radiative properties. Applied Spectroscopy, 1994, 48(4): 472–476

    Article  Google Scholar 

  112. Yamada J. Radiative properties of fibers with non-circular cross sectional shapes. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 73(2–5): 261–272

    Article  Google Scholar 

  113. Manickavasagam S, Mengüç M P. Scattering matrix elements of fractal-like soot agglomerates. Applied Optics, 1997, 36(6): 1337–1351

    Article  Google Scholar 

  114. Zhu Jinyu, Choi M Y, Mulholland G W. Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute, 2002, 29: 2367–2374

    Article  Google Scholar 

  115. Lei C X, Li F L, Liu C D, et al. Light scattering properties of soot aggregates. The Journal of Light Scattering, 2006, 18(3): 261–266

    Google Scholar 

  116. Huang C J, Liu Y F, Wu Z S. Numerical calculation of optical cross section and scattering matrix for soot aggregation particle. Acta Physica Sinica, 2007, 56(7): 4068–4074 (in Chinese)

    Google Scholar 

  117. Liu L, Mishchenko M I, Arnott W P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(15): 2656–2663

    Article  Google Scholar 

  118. Dobbins R A, Megaridis M. Absorption and scattering of light by polydisperse aggregates. Applied Optics, 1991, 30(33): 4747–4754

    Google Scholar 

  119. Liu L, Mishchenko M I. Scattering and radiative properties of complex soot and soot-containing aggregate particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 106(1–3): 262–273

    Article  Google Scholar 

  120. Mackowski D W. A simplified model to predict the effects of aggregation on the absorption properties of soot particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2006, 100(1–3): 237–249

    Article  Google Scholar 

  121. Eymet V, Brasil A M, Ha M E. Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 74(6): 697–718

    Article  Google Scholar 

  122. Yon J, Claude R, Thierry G. Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Particle & Particle Systems Characterization, 2008, 25(1): 54–67

    Article  Google Scholar 

  123. Farias T L, Koylu U O, Carvalho M G. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics, 1996, 35(33): 6560–6567

    Article  Google Scholar 

  124. Mackowski D W. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles. Applied Optics, 1995, 34(18): 3535

    Article  Google Scholar 

  125. Lee S C, Tien C L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1983, 29(3): 259–265

    Article  Google Scholar 

  126. Nilsson T, Sunden B. Thermal radiative coefficients of cylindrically and spherically shaped soot particles and soot agglomerates. Heat and Mass Transfer, 2004, 41(1): 12–22

    Article  Google Scholar 

  127. Hermann G, Iden R, Mielke M, et al. On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 1995, 186: 380–387

    Article  Google Scholar 

  128. Zhou B, Shen J, Wu Y H, et al. Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C, 2007, 27(5–8): 1291–1294

    Article  Google Scholar 

  129. Shen J, Zhang Z H, Wu G M, et al. Preparation and characterization of silica aerogels derived from ambient pressure Journal of Materials Science and Technology, 2006, 22(6): 798–802

    Google Scholar 

  130. Reim M, Beck A, Korner W, et al. Highly insulating aerogel glazing for solar energy usage. Solar Energy, 2002, 72(1): 21–29

    Article  Google Scholar 

  131. Wang P, Korner W, Emmerling A, et al. Optical investigations of silica aerogels. Journal of Non-Crystalline Solids, 1992, 145(1–3): 141–145

    Article  Google Scholar 

  132. Beck A, Korner W, Fricke J. Optical investigations of granular aerogel fills. Journal of Physics D: Applied Physics, 1994, 27(1): 13–18

    Article  Google Scholar 

  133. Zhu Qunzhi, Duan Rui, Li Yongguang. Measurements of solar optical properties of transparent insulation materials. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada, 2007, 919–924

  134. Wang P, Beck A, Korner W, et al. Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatmen. Journal of Physics D: Applied Physics, 1994, 27(2): 414–418

    Article  Google Scholar 

  135. Pajonk G M. Some applications of silica aerogels. Colloid and Polymer Science, 2003, 281(7): 637–651

    Article  Google Scholar 

  136. Ishimaru A. Diffusion of light in turbid material. Applied Optics, 1989, 28(12): 2210–2215

    Google Scholar 

  137. Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model based on diffusion approximation I: Theory. Applied Optics, 1997, 36(19): 4587–4599

    Article  Google Scholar 

  138. Chen B, Stamnes K, Stamnes J J. Validity of the diffusion approximation in bio-optical imaging. Applied Optics, 2001, 40 (34): 6356–6366

    Article  Google Scholar 

  139. Prahl S A, van Gemert M J C, Welch A J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics, 1993, 32(4): 559–568

    Google Scholar 

  140. Marchesini R, Bertoni A, Andreola S, et al. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Applied Optics, 1989, 28(12): 2318–2324

    Google Scholar 

  141. Pickering J W, Prahl S A, van Wieringen N, et al. Double-integrating- sphere system for measuring the optical properties of tissue. Applied Optics, 1993, 32(4): 399–410

    Google Scholar 

  142. Zhu D, Lu W, Zeng S, et al. Effect of light losses of sample between two integrating spheres on optical properties estimation. Journal for Biomedical Optics, 2007, 12(6): 064004

    Article  Google Scholar 

  143. Sardar D K, Mayo M. L, Glickman R D. Optical characterization of melanin. Journal for Biomedical Optics, 2001, 6(4): 404–411

    Article  Google Scholar 

  144. Cheong W F, Prahl S A, Welch A J. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics, 1990, 26(12): 2166–2185

    Article  Google Scholar 

  145. Bashkatov A N, Genina E A, Kochubey V I, et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005, 38: 2343–2355

    Article  Google Scholar 

  146. Troy T L, Thennadil S N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. Journal of Biomedical Optics, 2001, 6(2): 167–176

    Article  Google Scholar 

  147. Wang L, Jacques L S, Zheng L. MCML- Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine, 1995, 47(2): 131–146

    Article  Google Scholar 

  148. Liu Q, Ramanujam N. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied Optics, 2006, 45(19): 4776–4790

    Article  Google Scholar 

  149. Weidner V R, Hsia J J, Adams B. Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Applied Optics, 1985, 24(14): 2225–2230

    Article  Google Scholar 

  150. Bruegge C J, Stiegman A E, Rainen R A, et al. Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earthorbiting sensors. Optical Engineering, 1993, 32(4): 805–814

    Article  Google Scholar 

  151. Courreges-Lacoste G B, Schaarsberg J, Sprik R, et al. Modeling of Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering, 2003, 42(12): 3600–3607

    Article  Google Scholar 

  152. McGuckin B T, Haner D A, Menzies R T. Multiangle imaging spectroradiometer: optical characterization of the calibration panels. Applied Optics, 1997, 36(27): 7016–7022

    Article  Google Scholar 

  153. Stiegman A E, Bruegge C J, Springsteen A W. Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material. Optical Engineering, 1993, 32(4): 799–804

    Article  Google Scholar 

  154. Fairchild M D, Daoust D J O. Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Applied Optics, 1988, 27(16): 3392–3396

    Google Scholar 

  155. Kim C S, Kong H J. Rapid absolute diffuse spectral reflectance factor measurements using a silicon-photodiode array. Color Research and Application, 1997, 22(4): 275–279

    Article  Google Scholar 

  156. Sadhwani A, Schomacker K T, Tearney G J, et al. Determination of Teflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics, 1996, 35(28): 5727–5735

    Article  Google Scholar 

  157. Early E A, Barnes P Y, Johnson B C, et al. Bidirectional reflectance round-robin in support of the earth observing system program. Journal of Atmospheric and Oceanic Technology, 1999, 17: 1077–1091

    Article  Google Scholar 

  158. Huber N, Heitz J, Bauerle D. Pulsed-laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics, 2004, 25(1): 33–38

    Article  Google Scholar 

  159. Li Q, Lee B J, Zhang ZM, et al. Light scattering of semitransparent sintered polytetrafluoroethylene films. Journal of Biomedical Optics, 2008, 13(5): 054064–1/12

    Article  Google Scholar 

  160. Caron J, Andraud C, Lafait J. Radiative transfer calculations in multilayer systems with smooth and rough interfaces. Journal of Modern Optics, 2004, 51(4): 575–595

    Article  MATH  Google Scholar 

  161. Pak K, Tsang L, Li L, et al. Combined random rough surface and volume scattering based on Monte Carlo simulations of solutions of Maxwell’s equations. Radio Science, 1993, 28(3): 331–338

    Article  Google Scholar 

  162. Sentenac A, Giovannini H, Saillard M. Scattering from rough inhomogeneous media: splitting of surface and volume scattering. Journal of the Optical Society of America A, 2002, 19(4): 727–736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunzhi Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Lee, H. & Zhang, Z.M. Radiative properties of materials with surface scattering or volume scattering: A review. Front. Energy Power Eng. China 3, 60–79 (2009). https://doi.org/10.1007/s11708-009-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-009-0011-3

Keywords

Navigation