Skip to main content
Log in

Ammonia borane-based reactive mixture for trapping and converting carbon dioxide

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Ammonia borane (NH3BH3) is a reducing agent, able to trap and convert carbon dioxide. In the present work, we used a reactive solid consisting of a mixture of 90 wt.% of NH3BH3 and 10 wt.% of palladium chloride, because the mixture reacts in a fast and exothermic way while releasing H2 and generating catalytic Pd0. We took advantage of such reactivity to trap and convert CO2 (7 bar), knowing besides that Pd0 is a CO2 hydrogenation catalyst. The operation (i.e. stage 1) was effective: BNH polymers, and B—O, C=O, C—O, and C—H bonds (like in BOCH3 and BOOCH groups) were identified. We then (in stage 2) pyrolyzed the as-obtained solid at 1250 °C and washed it with water. In doing so, we isolated cyclotriboric acid H3B3O6 (stemming from B2O3 formed at 1250 °C), hexagonal boron nitride, and graphitic carbon. In conclusion, the stage 1 showed that CO2 can be ‘trapped’ and converted, resulting in the formation of BOCH3 and BOOCH groups (possible sources of methanol and formic acid), and the stage 2 showed that CO2 transforms into graphitic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonneuil C, Choquet P L, Franta B. Early warnings and emerging accountability: total’s responses to global warming, 1971–2021. Global Environmental Change, 2021, 71: 102386

    Article  Google Scholar 

  2. Krishnan J N U, Jakka S C B. Carbon dioxide: no longer a global menace: a future source for chemicals. Materials Today: Proceedings, 2022, 58: 812–822

    Google Scholar 

  3. Zoelle A, McIlvried H. Enthalpy and free energy of CO2 utilization pathways. National Energy Technology Laboratory; Released April 26, 2017; reference DOE/NETL-2017/1849. Available at https://netl.doe.gov/projects/files/EnthalpyandFreeEnergyofCO2UtilizationPathways_042617.pdf (accessed November 9, 2021)

  4. Franz D, Jandl C, Stark C, et al. Catalytic CO2 reduction with boron- and aluminum hydrides. ChemCatChem, 2019, 11(21): 5275–5281

    Article  CAS  Google Scholar 

  5. Ra E C, Kim K Y, Kim E H, et al. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catalysis, 2020, 10(19): 11318–11345

    Article  CAS  Google Scholar 

  6. Boutin E, Robert M. Molecular electrochemical reduction of CO2 beyond two electrons. Trends in Chemistry, 2021, 3(5): 359–372

    Article  CAS  Google Scholar 

  7. Variar A G, Ramyashree M S, Ail V U, et al. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: a review. Journal of Industrial and Engineering Chemistry, 2021, 99: 19–47

    Article  CAS  Google Scholar 

  8. Kumaravel V, Bartlett J, Pillai S C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Letters, 2020, 5(2): 486–519

    Article  CAS  Google Scholar 

  9. Burr J G Jr, Brown W G, Heller H E. The reduction of carbon dioxide to formic acid. Journal of the American Chemical Society, 1950, 72(6): 2560–2562

    Article  CAS  Google Scholar 

  10. Wartik T, Pearson R K. Reactions of carbon dioxide with sodium and lithium borohydrides. Journal of Inorganic and Nuclear Chemistry, 1958, 7(4): 404–411

    Article  CAS  Google Scholar 

  11. Knopf I, Cummins C C. Revisiting CO2 reduction with NaBH4 under aprotic conditions: synthesis and characterization of sodium triformatoborohydride. Organometallics, 2015, 34(9): 1601–1603

    Article  CAS  Google Scholar 

  12. Dovgaliuk I, Hagemann H, Leyssens T, et al. CO2-promoted hydrolysis of KBH4 for efficient hydrogen co-generation. International Journal of Hydrogen Energy, 2014, 39(34): 19603–19608

    Article  CAS  Google Scholar 

  13. Fletcher C, Jiang Y, Amal R. Production of formic acid from CO2 reduction by means of potassium borohydride at ambient conditions. Chemical Engineering Science, 2015, 137: 301–307

    Article  CAS  Google Scholar 

  14. Zhao Y, Zhang Z, Qian X, et al. Properties of carbon dioxide absorption and reduction by sodium borohydride under atmospheric pressure. Fuel, 2015, 142: 1–8

    Article  CAS  Google Scholar 

  15. Grice K A, Groenenboom M C, Manuel J D A, et al. Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions. Fuel, 2015, 150: 139–145

    Article  CAS  Google Scholar 

  16. Zhu W, Zhao J, Wang L, et al. Mechanochemical reactions of alkali borohydride with CO2 under ambient temperature. Journal of Solid State Chemistry, 2019, 277: 828–832

    Article  CAS  Google Scholar 

  17. Picasso C V, Safin D A, Dovgaliuk I, et al. Reduction of CO2 with KBH4 in solvent-free conditions. International Journal of Hydrogen Energy, 2016, 41(32): 14377–14386

    Article  CAS  Google Scholar 

  18. Kadota K, Sivaniah E, Horike S. Reactivity of borohydride incorporated in coordination polymers toward carbon dioxide. Chemical Communications, 2020, 56(38): 5111–5114

    Article  CAS  Google Scholar 

  19. Lombardo L, Yang H, Zhao K, et al. Solvent- and catalyst-free carbon dioxide trap and reduction to formate with borohydride ionic liquid. ChemSusChem, 2020, 13(8): 2025–2031

    Article  CAS  Google Scholar 

  20. Lombardo L, Ko Y, Zhao K, et al. Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angewandte Chemie International Edition in English, 2021, 60(17): 9580–9589

    Article  CAS  Google Scholar 

  21. Ménard G, Stephan D W. Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. Journal of the American Chemical Society, 2010, 132(6): 1796–1797

    Article  CAS  Google Scholar 

  22. Roy L, Zimmerman P M, Paul A. Changing lanes from concerted to stepwise hydrogenation: the reduction mechanism of frustrated Lewis acid-base pair trapped CO2 to methanol by ammonia-borane. Chemistry: A European Journal, 2011, 17(2): 435–439

    Article  CAS  Google Scholar 

  23. Zeng G, Maeda S, Taketsugu T, et al. Catalytic hydrogenation of carbon dioxide with ammonia-borane by pincer-type phosphorus compounds: theoretical prediction. Journal of the American Chemical Society, 2016, 138(41): 13481–13484

    Article  CAS  Google Scholar 

  24. Kumar A, Eyyathiyil J, Choudhury J. Reduction of carbon dioxide with ammonia-borane under ambient conditions: maneuvering a catalytic way. Inorganic Chemistry, 2021, 60(15): 11684–11692

    Article  CAS  Google Scholar 

  25. Zhao T, Li C, Hu X, et al. Base-assisted transfer hydrogenation of CO2 to formate with ammonia borane in water under mild conditions. International Journal of Hydrogen Energy, 2021, 46(29): 15716–15723

    Article  CAS  Google Scholar 

  26. Zhang J, Zhao Y, Akins D L, et al. CO2-enhanced thermolytic H2 release from ammonia borane. The Journal of Physical Chemistry C, 2011, 115(16): 8386–8392

    Article  CAS  Google Scholar 

  27. Xiong R, Zhang J, Zhao Y, et al. Rapid release of 1.5 equivalents of hydrogen from CO2-treated ammonia borane. International Journal of Hydrogen Energy, 2012, 37(4): 3344–3349

    Article  CAS  Google Scholar 

  28. Zhang J, Zhao Y, Guan X, et al. Formation of graphene oxide nanocomposites from carbon dioxide using ammonia borane. The Journal of Physical Chemistry C, 2012, 116(3): 2639–2644

    Article  CAS  Google Scholar 

  29. Toche F, Chiriac R, Demirci U B, et al. Ammonia borane thermolytic decomposition in the presence of metal(II) chlorides. International Journal of Hydrogen Energy, 2012, 37(8): 6749–6755

    Article  CAS  Google Scholar 

  30. Bahruji H, Bowker M, Hutchings G, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343: 133–146

    Article  CAS  Google Scholar 

  31. Petit J F, Dib E, Gaveau P, et al. 11B MAS NMR study of the thermolytic dehydrocoupling of two ammonia boranes upon the release of one equivalent of H2 at isothermal conditions. ChemistrySelect, 2017, 2(29): 9396–9401

    Article  CAS  Google Scholar 

  32. Łodziana Z, Błoński P, Yan Y, et al. NMR chemical shifts of 11B in metal borohydrides from first-principle calculations. The Journal of Physical Chemistry C, 2014, 118(13): 6594–6603

    Article  CAS  Google Scholar 

  33. Roy B, Pal U, Bishnoi A, et al. Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy. Chemical Communications, 2021, 57(15): 1887–1890

    Article  CAS  Google Scholar 

  34. Bowden M, Autrey T, Brown I, et al. The thermal decomposition of ammonia borane: a potential hydrogen storage material. Current Applied Physics, 2008, 8(3–4): 498–500

    Article  Google Scholar 

  35. NIST X-ray Photoelectron Spectroscopy (XPS) Database. Available at https://srdata.nist.gov/xps/ (accessed March 19, 2022)

  36. Gouin X, Grange P, Bois L, et al. Characterization of the nitridation process of boric acid. Journal of Alloys and Compounds, 1995, 224(1): 22–28

    Article  CAS  Google Scholar 

  37. Bachmann P, Düll F, Späth F, et al. A HR-XPS study of the formation of h-BN on Ni(1 1 1) from the two precursors, ammonia borane and borazine. The Journal of Chemical Physics, 2018, 149(16): 164709

    Article  CAS  Google Scholar 

  38. Zhao J, Shi J, Zhang X, et al. A soft hydrogen storage material: poly(methyl acrylate)-confined ammonia borane with controllable dehydrogenation. Advanced Materials, 2010, 22(3): 394–397

    Article  CAS  Google Scholar 

  39. Bresnehan M S, Hollander M J, Wetherington M, et al. Prospects of direct growth boron nitride films as substrates for graphene electronics. Journal of Materials Research, 2014, 29(3): 459–471

    Article  CAS  Google Scholar 

  40. Qiao L, Li Q, Zhou Z, et al. Inert can be advantageous: advisable reconstruction and application of palladium chloride for the preferential oxidation of the hydrogen impurity in carbon monoxide streams. ChemCatChem, 2016, 8(11): 1909–1914

    Article  CAS  Google Scholar 

  41. Mel’nikov N I, Peregood D P, Zhitnikov R A. Investigation of silver centres in glassy B2O3. Journal of Non-Crystalline Solids, 1974, 16(2): 195–205

    Article  Google Scholar 

  42. Zhou F, Xu D, Shi M, et al. Investigation on microstructure and its transformation mechanisms of B2O3—SiO2—Al2O3—CaO brazing flux system. High-Temperature Materials and Processes, 2020, 39(1): 88–95

    Article  CAS  Google Scholar 

  43. Chen L, Xu H F, He S J, et al. Thermal conductivity performance of polypropylene composites filled with polydopamine-functionalized hexagonal boron nitride. PLoS One, 2017, 12(1): e0170523

    Article  CAS  Google Scholar 

  44. Lee E S, Park J K, Lee W S, et al. Effect of deposition temperature on cubic boron nitride thin film deposited by unbalanced magnetron sputtering method with a nanocrystalline diamond buffer layer. Metals and Materials International, 2013, 19(6): 1323–1326

    Article  CAS  Google Scholar 

  45. Rao L S, Rao P V, Sharma M V N V D, et al. J-O parameters versus photoluminescence characteristics of 40Li2O—4MO (MO = Nb2O5, MoO3 and WO3)—55B2O3:1Nd2O3 glass systems. Optik, 2017, 142: 674–681

    Article  CAS  Google Scholar 

  46. Krishnan K. The Raman spectra of boric acid. Proceedings of the Indian Academy of Sciences Section A: Physical Sciences, 1963, 57(2): 103–108

    Article  CAS  Google Scholar 

  47. Yamauchi S, Doi S. Raman spectroscopic study on the behavior of boric acid in wood. Journal of Wood Science, 2003, 49(3): 227–234

    Article  CAS  Google Scholar 

  48. Tuinstra F, Koenig J L. Raman spectrum of graphite. The Journal of Chemical Physics, 1970, 53(3): 1126–1130

    Article  CAS  Google Scholar 

  49. Arenal R, Ferrari A C, Reich S, et al. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Letters, 2006, 6(8): 1812–1816

    Article  CAS  Google Scholar 

  50. Tatykaev B B, Burkitbayev M M, Uralbekov B M, et al. Mechanochemical synthesis of silver chloride nanoparticles by a dilution method in the system NH4Cl—AgNO3—NH4NO3. Acta Physica Polonica A, 2014, 126(4): 1044–1048

    Article  CAS  Google Scholar 

  51. Kalidindi S B, Sanyal U, Jagirdar B R. Metal nanoparticles via the atom-economy green approach. Inorganic Chemistry, 2010, 49(9): 3965–3967

    Article  CAS  Google Scholar 

  52. Chen W, Yu H, Wu G, et al. Ammonium aminodiboranate: a long-sought isomer of diammoniate of diborane and ammonia borane dimer. Chemistry: A European Journal, 2016, 22(23): 7727–7729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK (Project No. 218M181) and CAMPUS FRANCE PHC BOSPHORUS (Project No. 42161TB). C.A.C.M. and U.B.D. want to acknowledge the CONACyT (Mexican National Council for Science and Technology) for the scholarship of C.A.C.M. (2017–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit B. Demirci.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilla-Martinez, C.A., Coşkuner Fılız, B., Petit, E. et al. Ammonia borane-based reactive mixture for trapping and converting carbon dioxide. Front. Mater. Sci. 16, 220610 (2022). https://doi.org/10.1007/s11706-022-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0610-z

Keywords

Navigation