Skip to main content
Log in

Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process. There are abundant pores among the resulting nanowires due to the thermal decomposition of copper—zinc hydroxide carbonate. The specific surface area of the as-prepared CuO/ZnO sample is determined as 31.3 m2·g−1. The gas-sensing performance of the sea-urchin-like CuO/ZnO sensor is studied by exposure to volatile organic compound (VOC) vapors. With contrast to a pure porous sea-urchin-like ZnO sensor, the sea-urchin-like CuO/ZnO sensor shows superior gas-sensing behavior for acetone, formaldehyde, methanol, toluene, isopropanol and ethanol. It exhibits a high response of 52.6–100 ppm acetone vapor, with short response/recovery time. This superior sensing behavior is mainly ascribed to the porous nanowire-assembled structure with abundant p—n heterojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin W B, Yuan Z Y, Gao H L, et al. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sensors and Actuators B: Chemical, 2021, 341:130015

    Article  CAS  Google Scholar 

  2. Han Z J, Qi Y, Yang Z Y, et al. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(38): 13169–13188

    Article  CAS  Google Scholar 

  3. Ge W, Zhang X H, Ge X T, et al. Synthesis of α-Fe2O3/SiO2 nanocomposites for the enhancement of acetone sensing performance. Materials Research Bulletin, 2021, 141: 111379

    Article  CAS  Google Scholar 

  4. Zhu L, Zeng W, Li Y Q. A non-oxygen adsorption mechanism for hydrogen detection of nanostructured SnO2 based sensors. Materials Research Bulletin, 2019, 109: 108–116

    Article  CAS  Google Scholar 

  5. Kim K, Choi P G, Itoh T, et al. Catalyst-free highly sensitive SnO2 nanosheet gas sensors for parts per billion-level detection of acetone. ACS Applied Materials & Interfaces, 2020, 12(46): 51637–51644

    Article  CAS  Google Scholar 

  6. Zhang D Z, Mi Q, Wang D Y, et al. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sensors and Actuators B: Chemical, 2021, 339: 129923

    Article  CAS  Google Scholar 

  7. Wang M S, Wang Y W, Li X J, et al. WO3 porous nanosheet arrays with enhanced low temperature NO2 gas sensing performance. Sensors and Actuators B: Chemical, 2020, 316: 128050

    Article  CAS  Google Scholar 

  8. Liang F X, Liang L, Zhao X Y, et al. Mesoporous anodic α-Fe2O3 interferometer for organic vapor sensing application. RSC Advances, 2018, 8(54): 31121–31128

    Article  CAS  Google Scholar 

  9. Simonetti E A N, de Oliveira T C, Machado D E D, et al. TiO2 as a gas sensor: the novel carbon structures and noble metals as new elements for enhancing sensitivity — A review. Ceramics International, 2021, 47(13): 17844–17876

    Article  Google Scholar 

  10. Kang Y L, Yu F, Zhang L, et al. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 2021, 360: 115544

    Article  CAS  Google Scholar 

  11. Li C C, Zhou H G, Yang S C, et al. Preadsorption of O2 on the exposed (0 0 1) facets of ZnO nanostructures for enhanced sensing of gaseous acetone. ACS Applied Nano Materials, 2019, 2(10): 6144–6151

    Article  CAS  Google Scholar 

  12. Gupta S K, Mohan S, Valdez M, et al. Enhanced sensitivity of caterpillar-like ZnO nanostructure towards amine vapor sensing. Materials Research Bulletin, 2021, 142: 111419

    Article  CAS  Google Scholar 

  13. Li Q C, Chen D, Miao J M, et al. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. Sensors and Actuators B: Chemical, 2021, 326: 128952

    Article  CAS  Google Scholar 

  14. Li J P, Yang Y F, Wang Q, et al. Design of size-controlled Au nanoparticles loaded on the surface of ZnO for ethanol detection. CrystEngComm, 2021, 23(4): 783–792

    Article  CAS  Google Scholar 

  15. Wang H T, Li Y Y, Wang C C, et al. N-pentanol sensor based on ZnO nanorods functionalized with Au catalysts. Sensors and Actuators B: Chemical, 2021, 339: 129888

    Article  CAS  Google Scholar 

  16. Wang J, Hu C Y, Xia Y, et al. Highly sensitive, fast and reversible NO2 sensors at room-temperature utilizing nonplasmonic electrons of ZnO/Pd hybrids. Ceramics International, 2020, 46(6): 8462–8468

    Article  CAS  Google Scholar 

  17. Wang S, Jia F, Wang X, et al. Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: enhancement of gas sensing performance. ACS Omega, 2020, 5(10): 5209–5218

    Article  CAS  Google Scholar 

  18. Gong Y, Wu X F, Chen J Y, et al. Enhanced gas-sensing performance of metal@ZnO core—shell nanoparticles towards ppb-ppm level benzene: the role of metal—ZnO hetero-interfaces. New Journal of Chemistry, 2019, 43(5): 2220–2230

    Article  CAS  Google Scholar 

  19. Liu J J, Zhang L Y, Fan J J, et al. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sensors and Actuators B: Chemical, 2021, 331: 129425

    Article  CAS  Google Scholar 

  20. Nakate U T, Ahmad R, Patil P, et al. Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures. Journal of Alloys and Compounds, 2019, 797: 456–464

    Article  CAS  Google Scholar 

  21. Liang Y C, Chang Y C. The effect of Ni content on gas-sensing behaviors of ZnO—NiO p–n composite thin films grown through radio-frequency cosputtering of ceramic ZnO and NiO targets. CrystEngComm, 2020, 22(13): 2315–2326

    Article  CAS  Google Scholar 

  22. Hung P T, Hoat P D, Hien V X, et al. Growth and NO2-sensing properties of biaxial p-SnO/n-ZnO heterostructured nanowires. ACS Applied Materials & Interfaces, 2020, 12(30): 34274–34282

    Article  CAS  Google Scholar 

  23. Min S K, Kim H, Noh Y, et al. Fabrication of highly sensitive and selective acetone sensor using p-Co3O4 nanoparticle-decorated n-ZnO nanowires. Thin Solid Films, 2020, 714: 138249

    Article  CAS  Google Scholar 

  24. Nithya S, Sharan R, Roy M, et al. Ni doping in CuO: a highly sensitive electrode for sensing ammonia in ppm level using lanthanum gallate based electrolyte. Materials Research Bulletin, 2019, 118: 110478

    Article  Google Scholar 

  25. Kulkarni S, Ghosh R. A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires. Sensors and Actuators B: Chemical, 2021, 335: 129701

    Article  CAS  Google Scholar 

  26. Nanda A, Singh V, Jha R K, et al. Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Applied Materials & Interfaces, 2021, 13(18): 21936–21943

    Article  CAS  Google Scholar 

  27. Wang X, Li S H, Xie L L, et al. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International, 2020, 46(10): 15858–15866

    Article  CAS  Google Scholar 

  28. Mariammal R N, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin, 2018, 100: 420–428

    Article  CAS  Google Scholar 

  29. Na H B, Zhang X F, Zhang M, et al. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sensors and Actuators B: Chemical, 2019, 297: 126816

    Article  CAS  Google Scholar 

  30. Lee J E, Lim C K, Park H J, et al. ZnO-CuO core-hollow cube nanostructures for highly sensitive acetone gas sensors at the ppb level. ACS Applied Materials & Interfaces, 2020, 12(31): 35688–35697

    Article  CAS  Google Scholar 

  31. Navale Y H, Navale S T, Stadler F J, et al. Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceramics International, 2019, 45(2): 1513–1522

    Article  CAS  Google Scholar 

  32. Huang J R, Dai Y J, Gu C P, et al. Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. Journal of Alloys and Compounds, 2013, 575: 115–122

    Article  CAS  Google Scholar 

  33. Xian K C, Nie B, Li Z G, et al. TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chemical Engineering Journal, 2021, 407: 127156

    Article  CAS  Google Scholar 

  34. Chen C S, Liu X Y, Fang Q, et al. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum, 2020, 174: 109198

    Article  CAS  Google Scholar 

  35. Zhang X Y, He X S, Kang Z W, et al. Waste eggshell-derived dual-functional CuO/ZnO/eggshell nanocomposites: (photo)catalytic reduction and bacterial inactivation. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15762–15771

    Article  CAS  Google Scholar 

  36. Zhao S, Shen Y B, Hao F L, et al. p—n Junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Applied Surface Science, 2021, 538: 148140

    Article  CAS  Google Scholar 

  37. Sahu K, Bisht A, Kuriakose S, et al. Two-dimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. Journal of Physics and Chemistry of Solids, 2020, 137: 109223

    Article  CAS  Google Scholar 

  38. Qin C, Wang Y, Gong Y X, et al. CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. Journal of Alloys and Compounds, 2019, 770: 972–980

    Article  CAS  Google Scholar 

  39. Wang C, Zhu J W, Liang S M, et al. Reduced graphene oxide decorated with CuO-ZnO hetero-junctions: towards high selective gas-sensing property to acetone. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(43): 18635–18643

    Article  CAS  Google Scholar 

  40. Li H J, Zhang N, Zhao X L, et al. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D diamond-shaped MOF. Sensors and Actuators B: Chemical, 2020, 315: 128136

    Article  CAS  Google Scholar 

  41. Yin M L, Wang F, Fan H B, et al. Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application. Journal of Alloys and Compounds, 2016, 672: 374–379

    Article  CAS  Google Scholar 

  42. Yang C, Cao X, Wang S, et al. Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties. Ceramics International, 2015, 41(1): 1749–1756

    Article  CAS  Google Scholar 

  43. Liu X, Sun Y, Yu M, et al. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sensors and Actuators B: Chemical, 2018, 255: 3384–3390

    Article  CAS  Google Scholar 

  44. Zhang Y B, Yin J, Li L, et al. Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sensors and Actuators B: Chemical, 2014, 202: 500–507

    Article  CAS  Google Scholar 

  45. Yuan Z Y, Yang C, Meng F L. Strategies for improving the sensing performance of semiconductor gas sensors for high-performance formaldehyde detection: a review. Chemosensors, 2021, 9(7): 179

    Article  CAS  Google Scholar 

  46. Han M A, Kim H J, Lee H C, et al. Effects of porosity and particle size on the gas sensing properties of SnO2 films. Applied Surface Science, 2019, 481: 133–137

    Article  CAS  Google Scholar 

  47. Ren H B, Zhao W, Wang L Y, et al. Preparation of porous flower-like SnO2 micro/nano structures and their enhanced gas sensing property. Journal of Alloys and Compounds, 2015, 653: 611–618

    Article  CAS  Google Scholar 

  48. Shao S F, Chen X, Chen Y Y, et al. ZnO nanosheets modified with graphene quantum dots and SnO2 quantum nanoparticles for room-temperature H2S sensing. ACS Applied Nano Materials, 2020, 3(6): 5220–5230

    Article  CAS  Google Scholar 

  49. Drmosh Q A, Al Wajih Y A, Alade I O, et al. Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for highperformance acetone gas sensing. Sensors and Actuators B: Chemical, 2021, 338: 129851

    Article  CAS  Google Scholar 

  50. Lin T, Lv X, Hu Z, et al. Semiconductor metal oxides as chemoresistive sensors for detecting volatile organic compounds. Sensors, 2019, 19(2): 233

    Article  Google Scholar 

  51. Samadi S, Nouroozshad M, Zakaria S A. ZnO@SiO2/rGO core/shell nanocomposite: a superior sensitive, selective and reproducible performance for 1-propanol gas sensor at room temperature. Materials Chemistry and Physics, 2021, 271: 124884

    Article  CAS  Google Scholar 

  52. Han C H, Li X W, Shao C L, et al. Composition-controllable p-CuO/n-ZnO hollow nanofibers for high performance H2S detection. Sensors and Actuators B: Chemical, 2019, 285: 495–503

    Article  CAS  Google Scholar 

  53. Navale Y H, Navale S T, Stadler F J, et al. Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceramics International, 2019, 45(2): 1513–1522

    Article  CAS  Google Scholar 

  54. Mariammal R N, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin, 2018, 100: 420–428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grant Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application (LFCCMCA-09), Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources (LCECSC-01) and Natural Science Research Project for Universities in Anhui Province (KJ2019A0480).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Ren, Ruzhong Zuo or Jiarui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Weng, H., Zhao, P. et al. Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance. Front. Mater. Sci. 16, 220583 (2022). https://doi.org/10.1007/s11706-022-0583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0583-y

Keywords

Navigation